连续时间LTI系统分析

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实验三连续时间LTI系统分析一、实验目的(一)掌握使用Matlab进行连续系统时域分析的方法1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应(二)掌握使用Matlab进行连续时间LTI系统的频率特性及频域分析方法1、学会运用MATLAB分析连续系统的频率特性2、学会运用MATLAB进行连续系统的频域分析(三)掌握使用Matlab进行连续时间LTI系统s域分析的方法1、学会运用MATLAB求拉普拉斯变换(LT)2、学会运用MATLAB求拉普拉斯反变换(ILT)3、学会在MATLAB环境下进行连续时间LTI系统s域分析二、实验条件装有MATLAB的电脑三、实验内容(一)熟悉三部分相关内容原理(二)完成作业1、已知某系统的微分方程如下:)(3)()(2)(3)(tetetrtrtr其中,)(te为激励,)(tr为响应。(1)用MATLAB命令求出并画出2)0(,1)0(),()(3rrtuetet时系统的零状态响应和零输入响应(零状态响应分别使用符号法和数值法求解,零输入响应只使用符号法求解);符号法求解零输入响应:eq='D2y+3*Dy+2*y=0';cond='y(0)=1,Dy(0)=2';yzi=dsolve(eq,cond);yzi=simplify(yzi)yzi=符号法求解零状态响应:exp(-2*t)*(4*exp(t)-3)eq1='D2y+3*Dy+2*y=Dx+3*x';eq2='x=exp(-3*t)*heaviside(t)';cond='y=0,Dy=0';yzs=dsolve(eq1,eq2,cond);yzs=simplify(yzs)yzs=(exp(-2*t)*(exp(t)-1)*(sign(t)+1))/2图像如下:代码:subplot(211)ezplot(yzi,[0,8]);gridontitle('á?ê?è??ìó|')subplot(212)ezplot(yzs,[0,8]);gridontitle('á?×′ì??ìó|')数值计算法:t=0::10;sys=tf([1,3],[1,3,2]);f=exp(-3*t).*uCT(t);y=lsim(sys,f,t);plot(t,y),gridon;axis([010]);title('êy?μ????·¨μ?á?×′ì??ìó|')(2)使用MATLAB命令求出并画出系统的冲激响应和阶跃响应(数值法);用卷积积分法求系统的零状态响应并与(1)中结果进行比较;系统的冲激响应和阶跃响应(数值法):代码:t=0::10;sys=tf([1,3],[1,3,2]);h=impulse(sys,t);g=step(sys,t);subplot(211)plot(t,h),gridon;axis([010]);title('3??¤?ìó|')subplot(212)plot(t,g),gridon;axis([010]);title('?×???ìó|'卷积积分法求系统的零状态响应:Ctsconv函数的定义:function[f,t]=ctsconv(f1,f2,t1,t2,dt)f=conv(f1,f2);f=f*dt;ts=min(t1)+min(t2);te=max(t1)+max(t2);t=ts:dt:te;subplot(221)plot(t1,f1);gridonaxis([min(t1),max(t1),min(f1)-abs(min(f1)*,max(f1)+abs(max(f1)*])title('f1(t)');xlabel('t')subplot(222)plot(t2,f2);gridonaxis([min(t2),max(t2),min(f2)-abs(min(f2)*,max(f2)+abs(max(f2)*])title('f2(t)');xlabel('t')subplot(212)plot(t,f);gridonaxis([min(t),max(t),min(f)-abs(min(f)*,max(f)+abs(max(f)*])title('f(t)=f1(t)*f2(t)');xlabel('t')求系统的零状态响应代码:dt=;t1=0:dt:10;f1=exp(-3*t1).*uCT(t1);t2=t1;sys=tf([1,3],[1,3,2]);f2=impulse(sys,t2);[t,f]=ctsconv(f1,f2,t1,t2,dt)如图,根据两图相比较,两种方法做出的零状态响应大体相同。(3)若已知条件同(1),借助MATLAB符号数学工具箱实现拉普拉斯正反变换的方法求出并画出2)0(,1)0(),()(3rrtuetet时系统的零状态响应和零输入响应,并与(1)的结果进行比较。普拉斯正反变换的方法求出系统的零状态响应和零输入响应:代码:symstsRzis=(s+5)/(s^2+3*s+2);rzi=ilaplace(Rzis)rzi=4*exp(-t)-3*exp(-2*t)et=exp(-3*t)*heaviside(t);es=laplace(et);Rzss=((3+s)*es)/(s^2+3*s+2);rzs=ilaplace(Rzss)rzs=exp(-t)-exp(-2*t)根据图像,同样也能看出拉普拉斯变换法得出的结果相同。2、已知某RC网络如下,()rt()et+-+-RC(1)求出该网络的频域系统函数()Hj;H(jw)=a/(a+jw)其中a=1/RC(2)使用MATLAB命令画出1RC时系统的幅频特性和相频特性;代码:w=-3*pi::3*pi;b=[0,1];a=[1,1];h=freqs(b,a,w);subplot(211)plot(w,abs(h)),gridonaxis([-10100]);title('H(w)μ?·ù?μì?D?')subplot(212)plot(w,angle(h)),gridontitle('H(W)μ??à?μì?D?')(3)若1RC,且激励信号()sinsin(3)ettt,使用频域分析法求解()rt,分别画出()et和()rt波形,讨论经传输是否引起失真。代码:t=0::20;w1=1;w2=3;H1=1/(1+1i*w1);H2=1/(1+1i*w2);f=sin(t)+sin(3*t);y=abs(H1)*sin(w1*t+angle(H1))+abs(H2)*sin(w2*t+angle(H2));subplot(2,1,1);plot(t,f);gridonylabel('f(t)'),xlabel('Time(s)')title('ê?è?D?o?μ?2¨D?')subplot(2,1,2);plot(t,y);gridonylabel('y(t)'),xlabel('Time(sec)')title('?èì??ìó|μ?2¨D?')如图,两组波形进行比较可以明显看出,二者不成线性关系,所以此传输系统失真。3、已知某系统框图如下,∑+-))((121ssK)(1sV)(2sV(1)写出下图所示系统的s域系统函数()Hs;H(s)=1/(S2+S-2+K)(2)使用MATLAB命令分别用两种方式画出90,1,2,,34K时该系统的零极点分布图,并由图讨论K从0增长时,该系统的稳定性变化情况。代码:b1=[01];a1=[11-2];sys1=tf(b1,a1);subplot(321)pzmap(sys1)axis([-22-22])b2=[01];a2=[11-1];sys1=tf(b2,a2);subplot(322)pzmap(sys1)axis([-22-22])b3=[01];a3=[110];sys1=tf(b3,a3);subplot(323)pzmap(sys1)axis([-22-22])b4=[01];a4=[11];sys1=tf(b4,a4);subplot(324)pzmap(sys1)axis([-22-22])b4=[01];a4=[111];sys1=tf(b4,a4);subplot(325)pzmap(sys1)axis([-22-22])根据图像,很明显的可以看出,随着K的逐渐增大,系统逐渐稳定。(3)对(2)中的稳定系统,使用MATLAB的freqs函数画出它们的线性坐标下的幅频特性和相频特性图,并画出它们的波特图。w=-10::10;b1=[0,1];a2=[11];H=freqs(b1,a2,w);subplot(221)plot(w,abs(H)),gridonxlabel('w(rad/s)'),ylabel('\phi(w)')title('H1(s)μ?·ù?μì?D?')subplot(222)plot(w,angle(H)),gridonxlabel('w(rad/s)'),ylabel('\phi(w)')title('H1(s)μ??à?μì?D?')w=-10::10;b2=[0,1];a2=[111];H=freqs(b2,a2,w);subplot(223)plot(w,abs(H)),gridonxlabel('w(rad/s)'),ylabel('\phi(w)')title('H2(s)μ?·ù?μì?D?')subplot(224)plot(w,angle(H)),gridonxlabel('w(rad/s)'),ylabel('\phi(w)')title('H2(s)μ??à?μì?D?')figuresys1=tf(b1,a1);sys2=tf(b2,a2);bode(sys1);gridonholdonbode(sys2);gridonholdofftext(80,150,'H1(s)')text(80,-80,'H1(s)')text(30,120,'H2(s)')text(30,-160,'H2(s)')四、实验结论和讨论本次实验总体难度较大,但是数据上基本没有问题,除了在选择坐标长度时有些问题之外,总体没什么问题。图像清晰完整,结果也比较明显。多种方法比较算出的零状态响应结果都是相同的,没有太大的误差五、实验思考本次实验让我更加熟悉了MATLAB的基本用法和一些常用的数学计算函数,在此基础上也让我更加深入的对零输入响应,零状态响应等加深了认识,在一些细节用法的方面加深了印象。本次实验难度比较大,但是难度大的同时收获也非常丰富。今后,我要更加熟悉常用函数以及基本规则,争取快速又保质保量完成任务。

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功