解斜三角形(含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

考点一、利用正余弦定理求多边形的边或角例1.如下图所示,在四边形ABCD中,已知,10,14,60ADCDADABBDA,135BCD,求BDBC及的长.题型2:三角形面积例2.在ABC中,sincosAA22,AC2,3AB,求Atan的值和ABC的面积。解法一:先解三角方程,求出角A的值。.21)45cos(,22)45cos(2cossinAAAA又0180A,4560,105.AA13tantan(4560)2313A,.46260sin45cos60cos45sin)6045sin(105sinsinASACABAABC1212232643426sin()。解法二:由sincosAA计算它的对偶关系式sincosAA的值。sincosAA22①21(sincos)212sincos20180,sin0,cos0.1(sin2)2AAAAAAAA另解23cossin21)cos(sin2AAAA,sincosAA62②①+②得sinA264。①-②得cosA264。从而sin264tan23cos426AAA。以下解法略去。点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。两种解法比较起来,你认为哪一种解法比较简单呢?题型3:三角形中的三角恒等变换问题例3.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,求∠A的大小及cBbsin的值。分析:因给出的是a、b、c之间的等量关系,要求∠A,需找∠A与三边的关系,故可用余弦定理。由b2=ac可变形为cb2=a,再用正弦定理可求cBbsin的值。解法一:∵a、b、c成等比数列,∴b2=ac。又a2-c2=ac-bc,∴b2+c2-a2=bc。在△ABC中,由余弦定理得:cosA=bcacb2222=bcbc2=21,∴∠A=6在△ABC中,由正弦定理得sinB=aAbsin,∵b2=ac,∠A=60°,∴acbcBb60sinsin2=sin60°=23。解法二:在△ABC中,由面积公式得21bcsinA=21acsinB。∵b2=ac,∠A=60°,∴bcsinA=b2sinB。∴cBbsin=sinA=23。评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。题型4:正、余弦定理判断三角形形状例4.在△ABC中,若2cosBsinA=sinC,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案:C解析:2sinAcosB=sinC=sin(A+B)=sinAcosB+cosAsinB∴sin(A-B)=0,∴A=B另解:角化边点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径题型5:三角形中求值问题例5.ABC的三个内角为ABC、、,求当A为何值时,cos2cos2BCA取得最大值,并求出这个最大值。解析:由A+B+C=π,得B+C2=π2-A2,所以有cosB+C2=sinA2。cosA+2cosB+C2=cosA+2sinA2=1-2sin2A2+2sinA2=-2(sinA2-12)2+32;当sinA2=12,即A=π3时,cosA+2cosB+C2取得最大值为32。点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。题型6:正余弦定理的实际应用例6.(2009辽宁卷文,理)如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶。测量船于水面A处测得B点和D点的仰角分别为075,030,于水面C处测得B点和D点的仰角均为060,AC=0.1km。试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01km,21.414,62.449)解:在△ABC中,∠DAC=30°,∠ADC=60°-∠DAC=30,所以CD=AC=0.1又∠BCD=180°-60°-60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA,在△ABC中,,ABCsinCBCAsinAAB即AB=,2062315sinACsin60因此,BD=。km33.020623故B,D的距离约为0.33km。点评:解三角形等内容提到高中来学习,又近年加强数形结合思想的考查和对三角变换要求的降低,对三角的综合考查将向三角形中问题伸展,但也不可太难,只要掌握基本知识、概念,深刻理解其中基本的数量关系即可过关。考点四、正、余弦定理及三角形面积公式的综合应用例8.在ABC中,内角,,ABC的对边长分别为,,abc,已知2,3cC(1)若ABC的面积为3,求,ab的值.(2)若sinsin()2sin2CBCA,求ABC的面积.例9.在ABC中,角,,ABC的对边长分别为,,abc,且coscos2BbCac.(1)求角B的大小;(2)若13,4bac,求ABC的面积.三、思维总结1.解斜三角形的常规思维方法是:(1)已知两角和一边(如A、B、C),由A+B+C=π求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C=π,求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C=π求C,再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C=π,求角C。2.三角学中的射影定理:在△ABC中,AcCabcoscos,…3.两内角与其正弦值:在△ABC中,BABAsinsin,…4.解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。三、课后跟踪训练1.(2010上海文数18.)若△ABC的三个内角满足sin:sin:sin5:11:13ABC,则△ABC()(A)一定是锐角三角形.(B)一定是直角三角形.(C)一定是钝角三角形.(D)可能是锐角三角形,也可能是钝角三角形.解析:由sin:sin:sin5:11:13ABC及正弦定理得a:b:c=5:11:13由余弦定理得0115213115cos222c,所以角C为钝角2.(2010天津理数7)在△ABC中,内角A,B,C的对边分别是a,b,c,若223abbc,sin23sinCB,则A=()(A)030(B)060(C)0120(D)0150【答案】A【解析】本题主要考查正弦定理与余弦定理的基本应用,属于中等题。由正弦定理得232322cbcbRR,所以cosA=2222+c-a322bbccbcbc=323322bcbcbc,所以A=300【温馨提示】解三角形的基本思路是利用正弦、余弦定理将边化为角运算或将角化为边运算。3.(2010湖北理数)3.在ABC中,a=15,b=10,A=60°,则cosB=A-223B223C-63D63【答案】D【解析】根据正弦定理sinsinabAB可得1510sin60sinB解得3sin3B,又因为ba,则BA,故B为锐角,所以26cos1sin3BB,故D正确.4.(2010广东理数)11.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=3,A+C=2B,则sinC=.解:由A+C=2B及A+B+C=180°知,B=60°.由正弦定理知,13sinsin60A,即1sin2A.由ab知,60AB,则30A,180180306090CAB,sinsin901C5(2009湖南卷文)在锐角ABC中,1,2,BCBA则cosACA的值等于,AC的取值范围为.解析设,2.AB由正弦定理得,12.sin2sin2coscosACBCACAC由锐角ABC得0290045,又01803903060,故233045cos22,2cos(2,3).AC6.(2009全国卷Ⅰ理)在ABC中,内角A、B、C的对边长分别为a、b、c,已知222acb,且sincos3cossin,ACAC求b分析::此题事实上比较简单,但考生反应不知从何入手.对已知条件(1)222acb左侧是二次的右侧是一次的,学生总感觉用余弦定理不好处理,而对已知条件(2)sincos3cossin,ACAC过多的关注两角和与差的正弦公式,甚至有的学生还想用现在已经不再考的积化和差,导致找不到突破口而失分.解法:在ABC中则sincos3cossin,ACAC由正弦定理及余弦定理有:2222223,22abcbcaacabbc(角化边)化简并整理得:2222()acb.又由已知222acb24bb.解得40(bb或舍).7.在△ABC中,已知A、B、C成等差数列,求2tan2tan32tan2tanCACA的值。解析:因为A、B、C成等差数列,又A+B+C=180°,所以A+C=120°,从而2CA=60°,故tan32CA.由两角和的正切公式,得32tan2tan12tan2tanCACA。所以,2tan2tan332tan2tanCACA32tan2tan32tan2tanCACA。点评:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解,同时结合三角变换公式的逆用。8.(2009四川卷文)在ABC中,AB、为锐角,角ABC、、所对的边分别为abc、、,且510sin,sin510AB(I)求AB的值;(II)若21ab,求abc、、的值。解(I)∵AB、为锐角,510sin,sin510AB∴2225310cos1sin,cos1sin510AABB253105102cos()coscossinsin.5105102ABABAB∵0AB,∴4AB(II)由(I)知34C,∴2sin2C由sinsinsinabcABC得5102abc,即2,5abcb又∵21ab∴221bb∴1b∴2,5ac9.(2010陕西文数17)(本小题满分12分)在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.解在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos2222ADDCACADDC=10036196121062,ADC=120°,ADB=60°在△ABD中,AD=10,B=45°,ADB=60°,由正弦定理得sinsinABADADBB,∴AB=310sin10sin60256sinsin4522ADADBB10.(2010辽宁文数17)(本小题满分12分)在ABC中,abc、、分别为内角ABC、、的对边,且2sin(2)sin(2)sinaAbcBcbC(Ⅰ)求A的大小;(Ⅱ)若sinsin1BC,试判断ABC的形状.解:(Ⅰ)由已知,根据正弦定理得cbcbcba)2()2(22即bccba222由余弦定理得Abccbacos2222故120,21cosAA(Ⅱ)由(Ⅰ)得.sinsinsinsinsin222CBCBA又1sinsinCB,得21sinsinCB因为

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功