二次函数单元教学反思第二十六章《二次函数》是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。下面是我通过本单元的的教学后的的几点反思:“二次函数概念”教学反思关于“二次函数概念”教后做如下反思:我的成功之处是:教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。不足之处表现在:少数学生不能正确判定一个函数是否是二次函数。“二次函数的图像及性质”教学反思关于“二次函数的图象和性质”教后做如下反思:我的成功之处是:在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现主体参与、自主探索、合作交流、指导引探的教学理念。通过引导学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生观察图像自主探讨当a0时函数y=ax2的性质。当a0时函数y=ax2的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。通过观察自己画出的两个图象,它们代表函数y=ax2的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。绝大多数学生通过观察图像理解并掌握了y=ax2图像的性质,紧接着,我引导学生通过坐标平移作出y=ax2+c、y=a(x-h)2、y=a(x-h)2+c的图像,绝大多数学生很快掌握了图形平移的规律,理解了平移后图像的性质。达到了学习目标中的要求。不足之处表现在:1、课堂上讲的太多。让学生自主观察总结的机会少,学生还是被动的接受。2、学生作图能力差。简单的列表、描点、连线。学生做起来就比较困难。作图中单位长度不准确,描点不正确,连线时不会用光滑的曲线,而是画出很难看的图形。3、合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,没能培养学生的创新能力。4、少数学生二次函数图像平移变换能力差。不会进行二次函数图像的平移变换。“求二次函数解析式”教学反思关于“求二次函数解析式”教后做如下反思:我的成功之处是:教学中,我设计从求一次函数的解析式入手,引出求二次函数一般解析式的方法。学生把已知点代入二次函数的一般解析式,很快就得出了三元一次方程组,学生很快就理解了求二次函数一般解析式的方法。接着我改变条件,给出抛物线的顶点坐标和经过抛物线的一个点,引导学生设顶点式的二次函数解析式,学生在老师的点拨下,将已知点代入,很快球出了顶点式的二次函数解析式。接下来,我又引导学生观察抛物线与x轴的交点,启发学生设交点式解析式,学生很快就学会了用交点式求二次函数解析式的方法。在整个教学中,教学内容、教学环节、教学方法的设计都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,调动学生学习的积极性和主动性,所以教学非常流畅,效果不错,目标的达成度较高。不足之处表现在:1、学生对新学知识理解了,但一部分学生不会解三元一次方程组。2、少数学生对求顶点式和交点式的二次函数解析式有困难。3、由于对学生估计不足,引导学生探究三种不同形式的函数解析式的方法用时较多,导致教学时间紧张。“二次函数应用题”教学反思关于“二次函数应用题”教后做如下反思:我的成功之处是:一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。然后出示问题,对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导学生建立平面直角坐标系,分析解决问题的方法。学生从直角坐标系中发现了抛物线上的点,我进一步引导学生找抛物线的顶点坐标,在老师的引导下,学生设出了二次函数的解析式,并将找到的已知点代入,求出了二次函数的解析式。接着我引导学生就同一问题建立不同的直角坐标系,再去找抛物线上的已知点,这是学生找到了已知点,就能判断用哪种解析式,试着求出函数的解析式。接下来,再出示例题,引导学生分析解答。学生从上面的解题过程中得到了启示,学到了解题方法。教学中,我从学生的实际出发,帮助学生解决学习中的困难,启发和引导学生观察二次函数图像,对图像进行分析,得出解决问题的方案。所以教学方法的设计较完美,并且教学重点、难点把握的较准确,同时调动大多数学生学习的积极性和主动性,所以较好的达到教学目标。不足之处表现在:1、少数学生对于建立平面直角坐标系有困难。不会根据抛物线正确建立坐标系2、少数学生不会分析题意,不能正确列式求出二次函数的解析式3、学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。4、少数学生不会将二次函数的一般式配方转化为顶点式;不会利用顶点式求函数的最大值或最小值。总之,本单元的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。