1立体几何常考证明题1、已知四边形ABCD是空间四边形,,,,EFGH分别是边,,,ABBCCDDA的中点(1)求证:EFGH是平行四边形(2)若BD=23,AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD所成的角。2、如图,已知空间四边形ABCD中,,BCACADBD,E是AB的中点。求证:(1)AB平面CDE;(2)平面CDE平面ABC。3、如图,在正方体1111ABCDABCD中,E是1AA的中点,求证:1//AC平面BDE。A1ED1C1B1DCBAAHGFEDCBAEDBC24、已知ABC中90ACB,SA面ABC,ADSC,求证:AD面SBC.5、已知正方体1111ABCDABCD,O是底ABCD对角线的交点.求证:(1)C1O∥面11ABD;(2)1AC面11ABD.6、正方体''''ABCDABCD中,求证:(1)''ACBDDB平面;(2)''BDACB平面.SDCBAD1ODBAC1B1A1C3NMPCBA7、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.8、四面体ABCD中,,,ACBDEF分别为,ADBC的中点,且22EFAC,90BDC,求证:BD平面ACD9、如图P是ABC所在平面外一点,,PAPBCB平面PAB,M是PC的中点,N是AB上的点,3ANNB(1)求证:MNAB;(2)当90APB,24ABBC时,求MN的长。A1AB1BC1CD1DGEF410、如图,在正方体1111ABCDABCD中,E、F、G分别是AB、AD、11CD的中点.求证:平面1DEF∥平面BDG.11、如图,在正方体1111ABCDABCD中,E是1AA的中点.(1)求证:1//AC平面BDE;(2)求证:平面1AAC平面BDE.12、已知ABCD是矩形,PA平面ABCD,2AB,4PAAD,E为BC的中点.(1)求证:DE平面PAE;(2)求直线DP与平面PAE所成的角.513、如图,在四棱锥PABCD中,底面ABCD是060DAB且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.(1)若G为AD的中点,求证:BG平面PAD;(2)求证:ADPB;(3)求二面角ABCP的大小.14、如图1,在正方体1111ABCDABCD中,M为1CC的中点,AC交BD于点O,求证:1AO平面MBD.15、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.616、证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1DD1C1A1B1DCAB17、如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.