弹性力学基本概念

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

弹性力学中的基本假定1连续性假定在物体体积内都被连续介质所充满,没有任何空隙,亦即从宏观角度上认为物体是连续的。因此,所有的物理量均可以用连续函数来表示,从而可以应用数学分析工具2完全弹性假定物体是完全弹性的。这个假定包含两点含义:a.当外力取消时,物体回复到原状,不留任何残余变形,即所谓“完全弹性”b.应力与相应的应变成正比,即所谓“线性弹性”。根据完全弹性假定,物体中的应力与应变之间的物理关系可以用胡克定律来表示3均匀性物体是由同种材料组成的,物体内任何部分的材料性质均相同。这样,物体的弹性常数等不随位置坐标而变化4各向同性物体内任一点各方向的材料性质都相同。这样,弹性常数等也不随方向而变化。凡符合以上四个假定的物体,称为理想弹性体5小变形假定假定物体的位移和应变是微小的。物体在受力后,其位移远小于物体的尺寸,其应变远小于1。用途:a.简化几何方程,使几何方程成为线性方程。b.简化平衡微分方程面力是作用于物体表面上的外力体力是作用于物体体积内的外力应力单位截面积上的内力切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的形变就是物体形状的改变。通过任一点作3个沿正坐标方向的微分线段,并以这些微分线段的应变来表示该点的形变成为平面应力问题条件1等厚度薄板2面力只作用于板边,其方向平行与中面,且沿厚度不变3体力作用于体积内,其方向平行于中面,且沿厚度不变4约束只作用于板边,其方向平行于中面,且沿厚度不变成为平面应变问题条件1常截面长住体2面力作用于柱面上,其方向平行于横截面,且沿长度方向不变3体力作用于体积内,其方向平行于横截面,且沿长度方向不变4约束作用于柱面上,其方向平行于横截面,且沿长度方向不变平衡微分方程表示区域内任一点(x,y)的微分体的平衡条件平衡问题中一点应力状态1求斜面应力分量2由斜面应力分量求斜面上的正应力和切应力3求一点的主应力及应力方向4求一点的最大和最小的正应力和切应力几何方程表示任一点的微分线段上,形变分量与位移分量之间的关系式形变与位移的关系1如果物体的位移确定,则形变完全确定2当物体的形变分量确定时,位移分量不完全确定边界条件表示在边界上位移与约束,或应力与面力之间的关系式。可分为:位移边界条件、应力边界条件和混合边界条件位移边界条件实质上是变形连续条件在约束边界上的表达式应力分量和正的面力分量的正负号规定不同在正坐标面上,应力分量与面力分量同号;在负坐标面上,应力分量与面力分量异号应力边界条件两种表达方式:1在边界点取出一个微分体,考虑其平衡条件2在同一边界上,应力分量应等于对应的面力分量(数值相同,方向一致)圣维南原理如果把物体的一小部分边界上的面力,变化为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同)那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计只能应用于一小部分边界上(又称局部边界、小边界和次要边界)圣维南原理推广如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就只会使近处产生显著的应力而远处的应力可以不计应力边界条件上应用圣维南原理就是在小边界上将精确的应力边界条件式,代之为静力等效的主矢量和主矩的条件形变协调条件的物理意义1形变协调条件是连续体中位移连续性的必然结果2形变协调条件是形变对应的位移存在且连续的必要条件应力求解考虑的条件1体力为常量2全部边界上均为应力边界条件3弹性体为单连体应力分量和剪切力必然与弹性常数无关,由此可得应力解法与模型材料无关;平面应力与平面应变问题可互换;求应力分量=平衡微分方程=非齐次特解+齐次通解按应力函数求解,Φ应当满足的条件是1相容方程式2应力边界条件式。其中假设全部为应力边界条件3对于多连体,还须满足位移的单值条件逆解法步骤1先找出满足相容方程的解答2由Φ得出应力分量3在给定的边界形状下,根据应力边界条件,由应力反推出相应的面力半逆解法步骤1假设应力分量的函数形式2推求应力函数的形式3由相容方程求解应力函数4由应力函数求应力分量5考察边界条件几何方程表示微分线段上形变和位移之间的几何关系式空间问题物理方程两种形式1应变用应力表示用于按应力求解方法2应力用应变表示,用于按位移求解方法解的唯一性定理符合线弹性和小变形假定的弹性体,无初应力和初应变的作用,只受到给定的体力,边界上的面力和边界上的约束位移的作用,则弹性体在平衡状态时,其体内的应力、应变的解是唯一的解的叠加定理在线弹性和小变形假定下,作用于弹性体上几组荷载产生的总效应(应力和变形),等于每组荷载产生的效应之和,且与加载顺序无关虚位移原理假定处于平衡状态的弹性体在虚位移过程中,没有温度的改变,也没有速度的改变,即没有热能和动能的改变,则按照能量守恒定理,形变势能的增加,等于外力势能的减少,也就等于外力所做的功,即所谓虚功虚位移1所谓虚位移,是指满足协调条件(位移边界条件和几何方程)的。在平衡状态附近可能发生的微小位移改变2不仅适用于弹性体,也适用于一般的可变形体3虚位移是位移状态即位移函数的微小改变。虚位移在数学上称为位移的变分,因此虚位移原理式又称为位移变分方程4注意微分和变分是不同的概念,两者的自变量和因变量是不同的。虚功方程处于平衡状态的弹性体,当发生虚位移时,外力在虚位移上所做的虚功,等于应力在相应的虚应变上所做的功最小势能原理在给定的外力作用下,在满足位移边界条件的各组位移中间,实际存在的一组位移应使弹性体的总势能成为极值。考虑到二阶变分可以得出对于稳定平衡状态,这个极值是极小值外力功的互等定理符合线弹性和小变形假定的弹性体,若受到两组不同的外力作用,则第一组外力在第二组外力引起的位移上所做的功,等于第二组外力在第一组外力引起的位移上所做的功

1 / 2
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功