方法技巧专题:三角形中有关角度的计算——全方位求角度,一网搜罗◆类型一已知角的关系,直接利用内角和或结合方程思想求角度1.一个三角形三个内角的度数之比是2∶3∶5,则这个三角形一定是()A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形2.在△ABC中,∠A=2∠B=75°,则∠C=________.3.在△ABC中,∠A=3∠B,∠A-∠C=30°,则∠A=________°,∠C=________°.4.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.◆类型二综合内、外角的性质求角度5.如图,∠B=20°,∠A=∠C=40°,则∠CDE的度数为()A.40°B.60°C.80°D.100°6.如图,在△ABC中,D是BC上的一点,∠1=∠2,∠3=∠4,∠B=40°,求∠BAC的度数.7.如图,AD平分∠BAC,∠EAD=∠EDA.(1)求证:∠EAC=∠B;(2)若∠B=50°,∠CAD∶∠E=1∶3,求∠E的度数.◆类型三在三角板或直尺中求角度8.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上,如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°第8题图第9题图9.(2016-2017·湘潭市期末)将一副三角板按如图所示摆放,图中∠α的度数是()A.75°B.90°C.105°D.120°10.(2016-2017·娄底市新化县期中)如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B.60°C.70°D.80°11.(1)如图①,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C.在△ABC中,∠A=30°,则∠ABC+∠ACB=________,∠XBC+∠XCB=________;(2)如图②,改变直角三角板XYZ的位置,使三角板XYZ的两条直角边XY,XZ仍然分别经过B,C,那么∠ABX+∠ACX的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX的大小.◆类型四与平行线结合求角度12.如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于()A.60°B.25°C.35°D.45°第12题图第13题图13.(2016·丽水中考)如图,在△ABC中,∠A=63°,直线MN∥BC,且分别与AB,AC相交于点D,E,若∠AEN=133°,则∠B的度数为________.◆类型五与截取或折叠结合求角度14.如图,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC等于()A.42°B.66°C.69°D.77°第14题图第15题图15.如图所示,一个含60°角的三角形纸片,剪去这个60°角后,得到一个四边形,那么∠1+∠2的度数为()A.120°B.180°C.240°D.300°16.★如图,把三角形纸片ABC沿DE折叠,使点A落在四边形BCDE的内部A′处,已知∠1+∠2=80°,则∠A的度数为________.【变式题】如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内部C′处,若∠1=20°,求∠2的度数.参考答案与解析1.A2.67.5°3.90604.解:设∠A=x,则∠C=∠ABC=2x.根据三角形内角和为180°知∠C+∠ABC+∠A=180°,即2x+2x+x=180°,∴x=36°,∴∠C=2x=72°.在△BDC中,∠DBC=180°-90°-∠C=18°.5.C6.解:∵∠1=∠2,∠B=40°,∴∠2=∠1=(180°-40°)÷2=70°.又∵∠2是△ADC的外角,∴∠2=∠3+∠4.∵∠3=∠4,∴∠2=2∠3,∴∠3=12∠2=35°,∴∠BAC=∠1+∠3=105°.7.(1)证明:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠EAD=∠EDA,∴∠EAC=∠EAD-∠CAD=∠EDA-∠BAD=∠B.(2)解:设∠CAD=x°,则∠E=3x°.由(1)知∠EAC=∠B=50°,∴∠EAD=∠EDA=(x+50)°.在△EAD中,∠E+∠EAD+∠EDA=180°,即3x°+2(x+50)°=180°,解得x=16.∴∠E=48°.8.D9.C10.C11.解:(1)150°90°(2)不变化.因为∠A=30°,所以∠ABC+∠ACB=150°.因为∠X=90°,所以∠XBC+∠XCB=90°,所以∠ABX+∠ACX=(∠ABC-∠XBC)+(∠ACB-∠XCB)=(∠ABC+∠ACB)-(∠XBC+∠XCB)=150°-90°=60°.12.C13.70°14.C15.C解析:因为∠1=180°-∠AMN,∠2=180°-∠ANM,所以∠1+∠2=360°-(∠ANM+∠AMN).又因为∠ANM+∠AMN=180°-∠A=120°,所以∠1+∠2=240°.故选C.16.40°解析:由折叠的性质得∠AED=∠A′ED,∠ADE=∠A′DE.因为∠1+∠A′EA=180°,∠2+∠A′DA=180°,所以∠1+∠2+2∠AED+2∠ADE=360°,所以∠AED+∠ADE=140°,所以∠A=40°.【变式题】解:如图,因为∠A=65°,∠B=75°,所以∠CEF+∠CFE=∠A+∠B=140°,所以∠CEF+∠CFE+∠C′EF+∠C′FE=280°,所以∠2=360°-(∠CEF+∠CFE+∠C′EF+∠C′FE)-∠1=360°-280°-20°=60°.