数据仓库习题集

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一、选择填空.数据仓库的特点分别是面向主题、集成、相对稳定、反映历史变化。、粒度是对数据仓库中数据的综合程度高低的一个衡量。粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。维度可以根据其变化快慢分为元变化维度、缓慢变化维度和剧烈变化维度三类。连续型属性的数据样本之间的距离有欧氏距离、曼哈顿距离和明考斯基距离。在数据挖掘的分析方法中,直接数据挖掘包括(ACD)A分类B关联C估值D预言数据仓库的数据ETL过程中,ETL软件的主要功能包括(ABC)A数据抽取B数据转换C数据加载D数据稽核数据分类的评价准则包括(ABCD)A精确度B查全率和查准率CF-MeasureD几何均值层次聚类方法包括(BC)A划分聚类方法B凝聚型层次聚类方法C分解型层次聚类方法D基于密度聚类方法贝叶斯网络由两部分组成,分别是(AD)A网络结构B先验概率C后验概率D条件概率表置信度(confidence)是衡量兴趣度度量(A)的指标。A、简洁性B、确定性C.、实用性D、新颖性关于OLAP和OLTP的区别描述,不正确的是:(C)A.OLAP主要是关于如何理解聚集的大量不同的数据.它与OTAP应用程序不同.B.与OLAP应用程序不同,OLTP应用程序包含大量相对简单的事务.C.OLAP的特点在于事务量大,但事务内容比较简单且重复率高.D.OLAP是以数据仓库为基础的,但其最终数据来源与OLTP一样均来自底层的数据库系统,两者面对的用户是相同的简单地将数据对象集划分成不重叠的子集,使得每个数据对象恰在一个子集中,这种聚类类型称作(B)A、层次聚类B、划分聚类C、非互斥聚类D、模糊聚类将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A.频繁模式挖掘B.分类和预测C.数据预处理D.数据流挖掘为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A.探索性数据分析B.建模描述C.预测建模D.寻找模式和规则6.在数据挖掘的分析方法中,直接数据挖掘包括(ACD)A分类B关联C估值D预言7.数据仓库的数据ETL过程中,ETL软件的主要功能包括(ABC)A数据抽取B数据转换C数据加载D数据稽核8.数据分类的评价准则包括(ABCD)A精确度B查全率和查准率CF-MeasureD几何均值9.层次聚类方法包括(BC)A划分聚类方法B凝聚型层次聚类方法C分解型层次聚类方法D基于密度聚类方法10.贝叶斯网络由两部分组成,分别是(AD)A网络结构B先验概率C后验概率D条件概率表二、判断题1.数据挖掘的主要任务是从数据中发现潜在的规则,从而能更好的完成描述数据、预测数据等任务。(对)2.数据挖掘的目标不在于数据采集策略,而在于对于已经存在的数据进行模式的发掘。(对)3.图挖掘技术在社会网络分析中扮演了重要的角色。(对)4.模式为对数据集的全局性总结,它对整个测量空间的每一点做出描述;模型则对变量变化空间的一个有限区域做出描述。(错)5.寻找模式和规则主要是对数据进行干扰,使其符合某种规则以及模式。(错)6.离群点可以是合法的数据对象或者值。(对)7.离散属性总是具有有限个值。(错)8.噪声和伪像是数据错误这一相同表述的两种叫法。(错)9.用于分类的离散化方法之间的根本区别在于是否使用类信息。(对)10.特征提取技术并不依赖于特定的领域。(错)11.序列数据没有时间戳。(对)12.定量属性可以是整数值或者是连续值。(对)13.可视化技术对于分析的数据类型通常不是专用性的。(错)14.DSS主要是基于数据仓库.联机数据分析和数据挖掘技术的应用。(对)15.OLAP技术侧重于把数据库中的数据进行分析、转换成辅助决策信息,是继数据库技术发展之后迅猛发展起来的一种新技术。(对)16.商业智能系统与一般交易系统之间在系统设计上的主要区别在于:后者把结构强加于商务之上,一旦系统设计完毕,其程序和规则不会轻易改变;而前者则是一个学习型系统,能自动适应商务不断变化的要求。(对)17.数据仓库中间层OLAP服务器只能采用关系型OLAP(错)18.数据仓库系统的组成部分包括数据仓库,仓库管理,数据抽取,分析工具等四个部分.(错)19.Web数据挖掘是通过数据库仲的一些属性来预测另一个属性,它在验证用户提出的假设过程中提取信息.(错)21.关联规则挖掘过程是发现满足最小支持度的所有项集代表的规则。(错)22.利用先验原理可以帮助减少频繁项集产生时需要探查的候选项个数(对)。23.先验原理可以表述为:如果一个项集是频繁的,那包含它的所有项集也是频繁的。(错24.如果规则不满足置信度阈值,则形如的规则一定也不满足置信度阈值,其中是X的子集。(对)25.具有较高的支持度的项集具有较高的置信度。(错)26.聚类(clustering)是这样的过程:它找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标记未知的对象类。(错)27.分类和回归都可用于预测,分类的输出是离散的类别值,而回归的输出是连续数值。(对)28.对于SVM分类算法,待分样本集中的大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响。(对)29.Bayes法是一种在已知后验概率与类条件概率的情况下的模式分类方法,待分样本的分类结果取决于各类域中样本的全体。(错)30.分类模型的误差大致分为两种:训练误差(trainingerror)和泛化误差(generalizationerror).(对)31.在决策树中,随着树中结点数变得太大,即使模型的训练误差还在继续减低,但是检验误差开始增大,这是出现了模型拟合不足的问题。(错)32.SVM是这样一个分类器,他寻找具有最小边缘的超平面,因此它也经常被称为最小边缘分类器(minimalmarginclassifier)(错)33.在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。(错)34.聚类分析可以看作是一种非监督的分类。(对)35.K均值是一种产生划分聚类的基于密度的聚类算法,簇的个数由算法自动地确定。(错36.给定由两次运行K均值产生的两个不同的簇集,误差的平方和最大的那个应该被视为较优。(错)37.基于邻近度的离群点检测方法不能处理具有不同密度区域的数据集。(对)38.如果一个对象不强属于任何簇,那么该对象是基于聚类的离群点。(对)39.从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。(错)40.DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇。(对)三、计算题1.一个食品连锁店每周的事务记录如下表所示,其中每一条事务表示在一项收款机业务中卖出的项目,假定supmin=40%,confmin=40%,使用Apriori算法计算生成的关联规则,标明每趟数据库扫描时的候选集和大项目集。(15分)事务项目事务项目T1T2T3面包、果冻、花生酱面包、花生酱面包、牛奶、花生酱T4T5啤酒、面包啤酒、牛奶解:(1)由I={面包、果冻、花生酱、牛奶、啤酒}的所有项目直接产生1-候选C1,计算其支持度,取出支持度小于supmin的项集,形成1-频繁集L1,如下表所示:项集C1支持度项集L1支持度{面包}{花生酱}{牛奶}{啤酒}4/53/52/52/5{面包}{花生酱}{牛奶}{啤酒}4/53/52/52/5(2)组合连接L1中的各项目,产生2-候选集C2,计算其支持度,取出支持度小于supmin的项集,形成2-频繁集L2,如下表所示:项集C2支持度项集L2支持度{面包、花生酱}3/5{面包、花生酱}3/5至此,所有频繁集都被找到,算法结束,所以,confidence({面包}→{花生酱})=(4/5)/(3/5)=4/3confminconfidence({花生酱}→{面包})=(3/5)/(4/5)=3/4confmin所以,关联规则{面包}→{花生酱}、{花生酱}→{面包}均是强关联规则。2.给定以下数据集(2,4,10,12,15,3,21),进行K-Means聚类,设定聚类数为2个,相似度按照欧式距离计算。(15分)解:(1)从数据集X中随机地选择k个数据样本作为聚类的出示代表点,每一个代表点表示一个类别,由题可知k=2,则可设m1=2,m2=4:(2)对于X中的任意数据样本xm(1xmtotal),计算它与k个初始代表点的距离,并且将它划分到距离最近的初始代表点所表示的类别中:当m1=2时,样本(2,4,10,12,15,3,21)距离该代表点的距离分别为2,8,10,13,1,19。当m2=4时,样本(2,4,10,12,15,3,21)距离该代表点的距离分别为-2,6,8,11,-1,17。最小距离是1或者-1将该元素放入m1=2的聚类中,则该聚类为(2,3),另一个聚类m2=4为(4,10,12,15,21)。(3)完成数据样本的划分之后,对于每一个聚类,计算其中所有数据样本的均值,并且将其作为该聚类的新的代表点,由此得到k个均值代表点:m1=2.5,m2=12:(4)对于X中的任意数据样本xm(1xmtotal),计算它与k个初始代表点的距离,并且将它划分到距离最近的初始代表点所表示的类别中:当m1=2.5时,样本(2,4,10,12,15,3,21)距离该代表点的距离分别为-0.5,0.5,1.5,7.5,9.5,12.5,18.5。当m2=12时,样本(2,4,10,12,15,3,21)距离该代表点的距离分别为-10,-9,-8,2,3,9。最小距离是1.5将该元素放入m1=2.5的聚类中,则该聚类为(2,3,4),另一个聚类m2=12为(10,12,15,21)。(5)完成数据样本的划分之后,对于每一个聚类,计算其中所有数据样本的均值,并且将其作为该聚类的新的代表点,由此得到k个均值代表点:m1=3,m2=14.5:(6)对于X中的任意数据样本xm(1xmtotal),计算它与k个初始代表点的距离,并且将它划分到距离最近的初始代表点所表示的类别中:当m1=3时,样本(2,4,10,12,15,3,21)距离该代表点的距离分别为-1,1,7,9,12,18,。当m2=14.5时,样本(2,4,10,12,15,3,21)距离该代表点的距离分别为-12.58,-11.5,-10.5,-4.5,-2.5,0.5,6.5。最小距离是0.5将该元素放入m1=3的聚类中,则该聚类为(2,3,4),另一个聚类m2=14.5为(10,12,15,21)。至此,各个聚类不再发生变化为止,即误差平方和准则函数的值达到最优。3.K均值算法的过程为:1:选择K个点作为初始质点。2:repeat3:每个点指派到最近的质心,形成K个簇。4.重新计算每个簇的质心、5.until质心不发生变化。例题:A1,B1,C作为初始质点,距离函数是Euclidean函数,指派点到最近的质心,方法为计算其他点到质点的欧几里得距离。计算距离如下:A1-A2:dist=(2-2)2+(5-10)2=25;A1-A3:dist=(8-2)2+(4-10)2=72;A1-B2:dist=(7-2)2+(5-10)2=50;A1-B3:dist=(6-2)2+(4-10)2=52;A1-C2:dist=(4-2)2+(9-10)2=5;B1-A2:dist=(2-5)2+(5-8)2=18;B1-A3:dist=(8-5)2+(4-8)2=25;B1-B2:dist=(7-5)2+(5-8)2=13B1-B3:dist=(6-5)2+(4-8)2=17B1-C2:dist=(4-5)2+(9-8)2=2C1-A2:dist=(2-1)2+(5-2)2=10C1-A3:dist=(8-1)2+(4-2)2=53C1-B2:dist=(7-1)2+(5-2)2=45C1-B3:dist=(6-1)2+(4-2)2=29C1-C2:dist=(4-1)2+(9-2)2=58其他五个结点选择与其最近的质心,三个簇分别为:{B1,C2,B3,B2,A3}{C1,A2}{A1}计算这三个簇的质心

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功