摘要在现代数字通信系统中,频带传输系统的应用最为突出。用基带数字信号控制高频载波,把基带数字信号变换为频带数字信号的过程称为数字调制,已调信号通过信道传输到接收端,在接收端通过解调器把频带数字信号还原成基带数字信号,这种数字信号的反变换称为数字解调,把包含调制和解调过程的传输系统叫做数字信号的频带传输系统。以数字信号作为调制信号的调制技术。一般采用正弦波作为载波,这种数字调制又称为载波键控。用电键进行控制,这是借用了电报传输中的术语。载波键控是以数字信号作为电码,用它对正弦载波进行控制,使载波的某个参数随电码变化。根据正弦波受控参数的不同,载波键控可以分为三大类:移幅键控(ASK)、移频键控(FSK)、移相键控(PSK)。它们分别是正弦波的幅度、频率、相位随着数字信号而变化,图为三种键控相应的波形和功率谱密度。FSK信号的产生可利用一个矩形脉冲序列对一个载波进行调频而获得。这正是频率键控通信方式早期采用的实现方法,也是利用模拟调频法实现数字调频的方法。2FSK信号的另一产生方法便是采用键控发法,即利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选择。2FSK它是利用载频频率变化来传输数字信息。数字载频信号又可分为相位离散和相位连续两种情形。若两个振荡频率分别由不同的独立振荡器提供,它们之间的相位互不相关,这就叫相位离散的数字调频信号;若两个振荡频率由同一振荡信号源提供,是对其中一个载频进行分频,这样产生的两个载波就是相位连续的数字调频信号。本实验电路利用移频键控法,由振荡器产生不同的载频频率作为两个不同频率的载频信号,即为相位不同的数字调频信号,由基带信号对不同频率的载波信号进行选择。通过Multisim对分析过程进行仿真,清楚的展现2FSK数字频带传输系统的结构组成和传输特性。关键词:2FSK调制解调仿真目录2前言……………………………………………………………………第一章课程设计内容………………………………………………第二章基本原理……………………………………………………2.12FSK调制的原理…………………………………………………………2.22FSK解调原理……………………………………………………………第三章技术简介……………………………………………………3.1锁相环技术简介…………………………………………………………3.2Multisim技术简介………………………………………………………第四章单元电路设计………………………………………………4.12FSK调制电路单元……………………………………………………4.22FSK解调电路单元……………………………………………………第五章整体电路图设计与仿真……………………………………5.12FSK调制的总体电路图…………………………………………………5.22FSK解调的总体电路图…………………………………………………第六章总结……………………………………………………………参考文献……………………………………………………………附件1:硬件电路图及实验结果…………………………………附件2:各元件引脚图……………………………………………附件3:元器件清单………………………………………………第一章课程设计内容3一、目的及意义通过课程设计,使学生加强对高频电子技术电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。二、设计任务及主要技术指标和要求(1)根据2FSK特点,信源输入以及对应的频率自己确定;(2)了解2FSK信号调制解调的原理;(3)解调器用PLL;三、内容和要求要求掌握单元电路:正弦震荡器,调制、解调器,VCO。掌握调制、解调的基本原理。通过实际方案的分析比较,初步掌握简单实用电路的分析方法和工程设计方法。了解与课程有关的电子电路以及元器件工程技术规范,能按课程设计任务书的技术要求,编写设计说明,能正确反映设计和实验成果,能正确绘制电路图。第二章基本原理42.12FSK调制的原理频移键控(FSK)就是利用载波信号的频率变化来传递数字信息。在二进制频移键控(2FSK)中,载波的频率随二进制基带信号在f1和f2两个频率点之间变化。当传送“1”码时对应于载波频率f1,传送“0”码时对应于载波频率f2,故其表达式为:A其中,,为频率为的载波的初始相位,为频率为的载波的初始相位。令为的反码,即则有:当时,;当时,。则2FSK信号可表示为:其中,我们在分析中假设为单个矩形脉冲序列,其表达式为:由上式可知,相位不连续的2FSK信号可以看成是两个2ASK调幅信号之和,如图1:5图12FSK信号的时间波形2FSK信号的产生有两种方法:直接调频法和频移键控法。直接调频法是数字基带信号直接奇偶内阁制载波振荡器的振荡频率而达到改变振荡频率的目的,原理图如图2所示:图2直接调频原理图直接调频法虽然方法简单,但频率稳定度不高,同时转移速度不能太高。频移键控法有两个独立的振荡器。数字基带信号控制开关,选择不同频率的高频振荡信号,从而产生2FSK调制。本实验采用键控法产生2FSK信号,即用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出,如图3:图3键控法产生2FSK信号原理框图移频键控是利用载波的频率变化来传递数字信息,而且振幅不变。在2FSK中,载波的频率随二进制基带信号的频率在f0、f1两个频点之间变化。实验采用开关法产生2FSK信号,则分别由两个独立的频率源产生的信号,故相邻码的相位不一定是连续的,如图4所示6图4频键控法产生波形2.22FSK解调原理数字调频信号的解调方法很多,如鉴频法、相干检测法、包络检波法、过零检测法、差分检测法等。1.包络检波法包络检波法可视为由两路2ASK解调电路组成。这里,两个带通滤波器(带宽相同,皆为相应的2ASK信号带宽;中心频率不同,分别为(、)起分路作用,用以分开两路2ASK信号,上支路对应,下支路对应,经包络检测后分别取出它们的包络s(t)及;抽样判决器起比较器作用,把两路包络信号同时送到抽样判决器进行比较,从而判决输出基带数字信号。若上、下支路s(t)及的抽样值分别用表示,则抽样判决器的判决准则为7图52FSK信号包络检波方框图2.相干检测法相干检测的具体解调电路是同步检波器,原理方框图如图5-10所示。图中两个带通滤波器的作用同于包络检波法,起分路作用。它们的输出分别与相应的同步相干载波相乘,再分别经低通滤波器滤掉二倍频信号,取出含基带数字信息的低频信号,抽样判决器在抽样脉冲到来时对两个低频信号的抽样值进行比较判决(判决规则同于包络检波法),即可还原出基带数字信号。图62FSK同步检测方框图2.过零检测法单位时间内信号经过零点的次数多少,可以用来衡量频率的高低。数字调频波的过零点数随不同载频而异,故检出过零点数可以得到关于频率的差异,这就是过零检测法的基本思想。过零检测法方框图及各点波形如图4所示。2FSK输入信号经放大限幅后产生矩形脉冲序列,经微分及全波整流形成与频率变化相应的尖脉冲序列,这个序列就代表着调频波的过零点。尖脉冲触发一宽脉冲发生器,变换成具有一定宽度的矩形波,该矩形波的直流分量便代8表着信号的频率,脉冲越密,直流分量越大,反映着输入信号的频率越高。经低通滤波器就可得到脉冲波的直流分量。这样就完成了频率-幅度变换,从而再根据直流分量幅度上的区别还原出数字信号“1”和“0”。图7过零检测法方框图及各点波形图4.差分检测法差分检波法基于输入信号与其延迟τ的信号相比较,信道上的失真将同时影响相邻信号,故不影响最终鉴频结果。实践表明,当延迟失真为0时,这种方法的检测性能不如普通鉴频法,但当信道有较严重延迟失真时,其检测性能优于鉴频法。5.锁相环锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如下图所示。图8鉴相器电路鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:9式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。则模拟乘法器的输出电压uD为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。即uC(t)为:式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即则,瞬时相位差θd为对两边求微分,可得频差的关系式为上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,uc(t)为恒定值。当上式不等于零时,说明锁相环的相位还未锁定,输入信号和输出信号的频率不等,uc(t)随时间而变。压控振荡器的压控特性如图9所示,该特性说明压控振荡器的振荡频率ωu以ω0为中心,随输入信号电压uc(t)的变化而变化。该特性的表达式为10图9压控振荡器的压控特性上式说明当uc(t)随时间而变时,压控振荡器的振荡频率ωu也随时间而变,锁相环进入“频率牵引”,自动跟踪捕捉输入信号的频率,使锁相环进入锁定的状态,并保持ω0=ωi的状态不变。实践表明,当延迟失真为0时,这种方法的检测性能不如普通鉴频法,但当信道有较严重延迟失真时,其检测性能优于鉴频法。11第三章技术简介3.1锁相环技术简介许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。锁相环路是一种反馈控制电路,简称锁相环。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。锁相环是一种自动相位控制系统,它由鉴相器(PD)、环路滤波器(LP)和压控振荡器(VCO)三个部分组成,广泛应用于通信、雷达、导航以及各种测量仪器中。锁相环技术目前的应用集中在以下三个方面:第一信号的调制和解调;第二信号的调频和解调;第三信号频率合成电路。锁相环及其应用电路“通信电子线路”课程教学中的重点内容,但比较抽象,还涉及到新的概念和复杂的数学分析。因此无论是教师授课还是学生理解都比较困难。为此,我们将基于Multisim的锁相环应用仿真。实践证明这些仿真电路可以帮助学生对相关内容的理解,并为进行系统设计工作打下良好的基础。3.2Multisim技术简介Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于初级的模拟/数字电路板的设计工作,包括电路原理图图形及电路硬件描述语言的输入方式,具有丰富的仿真分析能力。主要内容为基于Multisim的模拟乘法器应用设计与仿真。阐述了双边带调幅及普通调幅、同步检波、混频、乘积型鉴相电路的原理,并在电路设计与仿真平台Multisim11仿真环境中创建集成模拟乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真。Multisim提炼了SPICE仿真的复杂内容,这样无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。NIMultisim软件结合了直观的捕获和功能强大的仿真,能够快速、轻松、高效地对电12路进行设计和验证。凭借NIMultisim,可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器仿真电路行为。借助专业的高级SPICE分析和虚拟仪器,能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。与NILabVIEW和