量子力学中的符号

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

........................................SymbolsinQuantumMechanicsSymbolsinQuantumMechanics李志伟信息科学技术学院2014年12月25日........................................SymbolsinQuantumMechanicsIntroductionThreeformulationsWavemechanics(Schödinger,1927)Matrixmechanics(Heisenberg,1926)ThefirsttworelyonconcreteHilbertspaces,thelastoneonanabstractHilbertspace.........................................SymbolsinQuantumMechanicsIntroductionThreeformulationsWavemechanics(Schödinger,1927)Matrixmechanics(Heisenberg,1926)ThefirsttworelyonconcreteHilbertspaces,thelastoneonanabstractHilbertspace.........................................SymbolsinQuantumMechanicsIntroductionThreeformulationsWavemechanics(Schödinger,1927)Matrixmechanics(Heisenberg,1926)TheinvariantformalismThefirsttworelyonconcreteHilbertspaces,thelastoneonanabstractHilbertspace.........................................SymbolsinQuantumMechanicsIntroductionThreeformulationsWavemechanics(Schödinger,1927)Matrixmechanics(Heisenberg,1926)TheinvariantformalismThefirsttworelyonconcreteHilbertspaces,thelastoneonanabstractHilbertspace.........................................SymbolsinQuantumMechanicsIntroductionThreeformulationsWavemechanics(Schödinger,1927)Matrixmechanics(Heisenberg,1926)TheinvariantformalismThefirsttworelyonconcreteHilbertspaces,thelastoneonanabstractHilbertspace.........................................SymbolsinQuantumMechanicsIntroductionThreeformulationsWavemechanics(Schödinger,1927)Matrixmechanics(Heisenberg,1926)DiracNotation(Dirac,1939)ThefirsttworelyonconcreteHilbertspaces,thelastoneonanabstractHilbertspace.........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomega........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomega........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomega........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomega........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomega........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomegaψn()=8:Ç2sinnπ,00,0or........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomegaˆAψ=φ∫ψ∗ϕdτ........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomegaV(r)=14πϵ0er2V(r)=14πε0er2........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomega(n+1)=n!E=hν........................................SymbolsinQuantumMechanicsBasicsGreekLettersAαalphaBβbetaγgammaΔδdeltaEε,ϵepsilonZζzetaHηetaΘϑ,θthetaιiotaKκkappaΛλlambdaMμmuNνnuξxiOoomicronπpiPϱ,ρrhoς,σsigmaTτtauYυupsilonφ,ϕphiXχchiΨψpsiΩωomega........................................SymbolsinQuantumMechanicsBasicsMathematicalOperatorsDefferential:∂∂,∇(Hmton),Δ(Lpce),∇2,dr3InnerProduct:(⃗,⃗y)Kronecker符号:δjLevi-Civila符号:ϵαβγ........................................SymbolsinQuantumMechanicsBasicsMathematicalOperatorsDefferential:∂∂,∇(Hmton),Δ(Lpce),∇2,dr3InnerProduct:(⃗,⃗y)Kronecker符号:δjLevi-Civila符号:ϵαβγ........................................SymbolsinQuantumMechanicsBasicsMathematicalOperatorsDefferential:∂∂,∇(Hmton),Δ(Lpce),∇2,dr3InnerProduct:(⃗,⃗y)Kronecker符号:δjLevi-Civila符号:ϵαβγ........................................SymbolsinQuantumMechanicsBasicsMathematicalOperatorsDefferential:∂∂,∇(Hmton),Δ(Lpce),∇2,dr3InnerProduct:(⃗,⃗y)Kronecker符号:δjLevi-Civila符号:ϵαβγ........................................SymbolsinQuantumMechanicsBasicsMathematicalOperatorsDefferential:∂∂,∇(Hmton),Δ(Lpce),∇2,dr3InnerProduct:(⃗,⃗y)K

1 / 63
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功