全光网络的发展历程与发展趋势

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

全光网络的发展历程与发展趋势彭承柱彭明宇摘要:本文阐述全光网络如何经过WDM技术的发展与演变、全光网络的技术研发、过渡到自动光交换网、直到当前智能光交换网络的发展历程与发展趋势。1引言据国外统计,骨干因特网的带宽在1997年为622Mbps,1998年是2.5Gbps,1999年突破10Gbps,2000年接近40Gbps;也就是说每经过6-9个月因特网的带宽或业务量翻一番。按照目前单波长光纤系统的传输速率最高为40Gbps考虑,仅因特网的数据流就占满了整个单波长系统的传输容量,更不用说宽带业务和其他多媒体应用了。事实上随着因特网的飞速发展,几乎在网络的所有层面,如企业网、接入网,传输、选路与交换等都在研发与应用高速宽带技术。带宽的饥渴极大地促进了DWDM技术的快速发展,基础速率为2.5Gbps/10bps的8波、16波、32波、40波乃至80波的DWDM系统已经商用,所有的波长都落在常规的C带内(1530-1565nm);此波带又分为蓝带和红带。各个波长或光路的间隔从100GHz(0.8nm)缩小到50GHz(0.4nm)。进一步增加波长数,例如增加到160波以上时需要应用L波带(1565-1625nm),也就是第4代WDM光纤通信系统。当波长数达到数百量级时各光路间隔将缩小到25GHz(0.2nm);此时对光源的精度与稳定度,对分光滤波器的分辨率的要求均很高。表1给出新世纪开始DWDM系统研发水平的概貌。由表1可见10Tbps的总容量业已突破,很多公司例如Ciena公司已在研发16Tbps的系统;而朗讯贝尔实验室的科研人员认为商用的DWDM系统容量最高将达到100Tbps。DWDM系统在长途光传送网中的发展方向是超密集波分复用,超大容量和超常中继距离传输;而在城域光传送网中的发展方向是稀疏波分复用,超大容量、短传输距离和价廉的CWDM系统,也就是和具有第5光窗口的无水峰光纤即新的全波光纤相应的第5代WDM系统。此类光纤系统可利用的光谱是1280-1615nm,是常规可用波长范围的数倍,复用波长数大大增加,从而经济有效地解决网络扩容问题,故WDM系统和技术的发展为全光网络打下了物质基础。2WDM技术的发展与演变在电信运营商寻找新的创收方法的同时,他们还在力图削减成本。直到几年前,削减成本的努力目标是在传输方面。例如血癌用DWDN系统就能经济有效地扩充网络容量,极大地削减了每话路的成本。此外,在长途中心局(CO)之间避免电信号再生是另一个削减成本的主要途径。通常每隔500km左右,光信号必须被变换到电信号,再消除失真后再变换成光信号。由于此再生过程需要再光链路两端配置相同的设备,故比无再生中继的光链路端对系统的成本增加约1倍。采用喇曼(Raman)放大的超常距离(ULH)无电中继的DWDM系统,每波长或每个光路光信号的传输距离由约500km延伸到1500-2000km。例如由芝加哥到旧金山一个OC-192(STM-64)光路原来需要2个电再生中继器,经过2次光一电一光变换,现在即可不再需要了。据Cable&Wireless公司的网络战略规划高级主管DaveGarbin估计,ULHDWDM系统可能会将传送一个新波长的成本减少到有电中继系统成本的1/3,甚至1/4。尽管光一电一光中继方式对光纤的损耗和色散搜有补偿作用,但毕竟装置复杂、提及打且损能多,使多波长复用系统变得很复杂而昂贵,故在光纤损耗限制的系统中,采用光放大器直接放大光信号,不仅可以节省成本,同时也为实现全光通信打下基础。也就是为什么一度出现低色散与低色散斜率型光纤,例如G.655光纤、真波光纤等新一轮建设高潮的原因。目前已实现的光放大器,除去应用最多的掺铒光纤放大器(EDFA)外,就是非线性光纤放大器和半导体激光放大器。前者利用光纤中的非线形效应,利用受激喇曼散射(SRS)和受激布里渊散射(SBS),实现受激喇曼散射光纤放大器和受激布里渊散射光纤放大器。喇曼光放大器能在1292nm到1660nm很宽的光谱上放大光信号,因此,它适合于任何类型的光纤,可在选定的低色散光谱区工作,例如G.652光纤的1310nm波长区对光信号直接放大,同时其成本又较低。它可采用同向或反向光泵,增益带有6THz。除集中式喇曼光放大器外。分布式喇曼光纤放大器能在速率到达40Gbps的高速光网络中工作,增加光放大器之间的距离,实际上喇曼光放大器仅是掺铒光纤放大器的一种补充,目前还不能完全取代它。后者利用半导体的光电效应放大光信号(SOA),例如JDSUniphase和其他一些公司生产的半导体光放大器。目前它的输出功率不够且噪声还比较高,不适应长距离超高速DWDM系统的应用;但可用于短距离的WDM系统和城域光网中,尤其重要的是它能将接受的光信号波长改变,输出新的波长,并在次过程中放大光信号,起动态波长变换作用,必将会在全光网络的动态配置波长、选路由等方面大显身手。它虽未商用,但有望取得新的进展。当然,还可以配合利用光弧子效应不常光纤色散引起的脉冲展宽,延长光信号传输距离,增大光纤的传输跨度。根据Worldcom公司网络结构与先进技术副总裁JackWimmer估计,如果采用ULH技术,80-85%的长途光链路不需要光一电一光中继。这将减少高成本的光电变换器与分波滤光器。据路由器厂商介绍,光器件端口的成本占到路由器成本的60-70%,而端口的成本主要是光电变换器成本。一个OC-192光接口大约需要10万美元,一个OC-48(STM-16)光接口约4万美元。基于同样的原因,近期在城域网(不用光放大器)中利用全波光纤开发应用的CWDM系统势头很猛。因通过使用便宜、低功率的普通激光器(无制冷直接调制),低成本宽波长间隔的分拨滤光器以及较低等级的光纤,可降低OC-192光链路的成本达40%。事实上,全光交换也是这一思想的反映:因为消除了高成本的光一电一光交换就可以大大减少变换成本。不仅在网络中心采用全光交换机,而且希望在信号到达网络边缘之前都无需将光信号变换到电信号。由于WDM系统成本的进一步下降,更加增强的竞争力与无以匹敌的容量或带宽优势,将鼓励其向地区网乃至用户接入网发展,从而在整个通信网络中自然地形成一光层或光子层。这就说明随着WDM光网络应用规范的迅速扩展,WDM光传送网(OTN)将从容量带宽的增长发展的功能完善;将从追求线路系统的传输距离到保护恢复自愈;从过去完全面向SDH平台到现在面向多业务平台;即转变单纯大容量宽带传送为端到端的多业务的连接,进一步将WDM技术和光交换结合形成一个大吞吐量的光网络平台,以有效地支持各种业务,尤其是IP分组数据业务。WDM技术的这种发展与演变将左右OTN技术的发展。道理很简单,一个波长10Gpbs速率的光路相当于12万条话路容量,而一个80*10GbpsWDM系统的容量接近1000万条电路,如此巨大容量的系统是不允许片刻中断的。为此,可像SDH自愈环那样,在WDM系统中采用OADM构成两纤单向光路共享保护环网,以及四纤线路共享保护环网。一旦某一方向某一段的光纤发生故障就能在50ms内自动迂回沟通,实现光路的自动保护,提高光网络的可靠性、可用性与生存性。作为光网络通信枢纽节点的主要设备OXC,位于多个光环网的交汇节点,随着调整疏通光波长数和光路走向,实现各向光路的交叉连接。从而,可通过OADM和OXC处理传送光层上的全光数字流,而将较低容量的电数字流的传送处理留给电层的ADM和DXC,以提高网络配置的灵活性,适应业务的迅速变化与需要,并降低网络运营维护管理的费用。3全光网络的技术与结构在传统的光一电一光骨干网络节点中,尤其是枢纽节点,典型的情况是约有75-80%的业务量是直通的,为了少量的业务不得不全部进行光电变换处理,将落地的光信号转变为电信号,进行交换与选路,然后再将其变换为光信号,送到适当的光路中。这种电的处理技术大大限制了WDM技术的优越性,使网络节点乃至网络的吞吐量变小,形成电子瓶颈。考虑这种现实,以及前节所述理由,人们想到全光网络。全光网络在原理上讲就是网中端到端用户节点之间全是光路,始终保持光信号传送,没有任何光电变换器,也就是网络对光信号透明。就透明性来说只要有光电变换就是半透明的;我们当然希望做到全透明,以便全面充分地利用光纤的能力,使网络带宽几乎无限,对传送的信号无任何限制,对信号的处理极少,因而网络最经济可靠。但是,目前实现全透明光网络还有难处,例如直接组网与运营还有不少全光组网技术及相应标准需要研究开发;光交换机还未成熟和商用。所以,考虑现实,为避免技术和运营的困难,ITU-T决定按光传送网(OTN)的概念研究光网络技术并制订相应的标准化建议。OTN是据网络功能与主要特征定名,它不限定网络的透明性,虽然最终目的是透明的全光网络,但可从半透明开始,即在网中允许有光电变换。这就解决了全光网络透明部分应多少的争议。全光网络的基本技术有全光交换,全光交叉连接、全光中继、全光复用与解复用等。(1)全光交换目前在研究开发热光、液晶光和声光交换机。热光交换机采用可调节热量的聚合物波导,其交换机制是由分布在聚合物中的薄膜加热元素控制。当电流通过加热器时改变波导分支内的热量分布,从而改变了折射率,将光从主波导耦合至分支波导中。它的优点是体积小、交换速度快;缺点是介入损耗高、串光大,且要求有良好的散热器。液晶光交换机包含液晶片、极化光束分离器或光束调相器。液晶片的作用是旋转入射光的极化角,而角度受电极上的电压控制。极化光束分离器或光束调相器起引导光信号到目的端口的作用。用此技术可构造多光路矩阵交换机,但接入损耗大,串光严重,驱动电路也较昂贵。声光交换机以声光技术为基础,可实现微秒级的交换速度,但不适合矩阵交换机,因需要复杂的控制系统并需要通过改变波长来控制交换机。此外,介入损耗随波长变化较大,驱动电路昂贵。由于在网络的边界,例如骨干网与城域网,它们所传输的波长是不一样的,光路的交换必须改变波长,而不仅是改变光的传输方向或光纤,所以,开发技术成熟、商用的全光交换机好有很长的一段路程。(2)光交叉连接OXCOXC设备是光网络的关键设备,用于光层上的保护、回复和分布式网管,实现光网络中光波之间的交换。1998年年底贝尔实验室宣布一项专利成果微电子机械系统(MEMS)。MEMS技术可以在极小的精片上排列大规模的机械阵列,其相应速度和可靠性很高。利用MEMS实现的OXC实际是一个二维的镜片阵,当需要将入射的光波进行改变时,可通过改变镜片的角度,将光波反射到相应得光纤中,如图1所示,用这种结构得OXC可以组成大型光交叉矩阵,具有极好的光学特性。当组成一个256*256的OXC时,其体积仅有25*50*50mm3大小,光路转换时间小于5ms,串光优于-50dB,介入损耗为6dB。由于采用半导体光放大器阵列构成的OXC,随阵列扩大接入损耗增加很多,从而在向容量大型化发展上遇到难于克服的障碍。相反,图1方案介入损耗小,极有可能成为今后OXC的发展方向。(3)全光中继这一部分前面已有介绍(4)光复用与解复用有光时分复用与解复用技术(同一波长但不同的时间间隔复用,目前仍处于实验室研发阶段),广播分复用与解复用技术,光空间复用与解复用技术,光空间复用与解复用技术,例如用不同的光纤传输。本文简要介绍上下光路(波长)复用(OADM)技术。因为在WDM光网络中人们的兴趣越来越集中到OADM上。它用于网络节点仅上下所需的波长(光路)信号,而让其他波长信号光学透明地通过,实现动态灵活、经济地重构配置网络。OADM有固定波长型和可变波长型。前者仅上下固定波长的光路,节点的路由是固定的;优点是性能可靠、延时小,缺点是缺乏组网灵活性。后者可在网络节点任意上下光路,可实现光网络的动态重构与配置,使网络的波长资源得到最佳分配利用,其核心光器件是光开关与波长可调谐激光器。构成OADM的方案有体光栅(BulkGrating),法布里泊罗(Fabry-Perot)、光纤光栅、平面波导InP或硅沉积二氧化硅(SilicaonSilicon),声光等技术。最近倾向于采用贝尔实验室的MEMS和可变波长

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功