3.2.1几个常用函数的导数及运算律

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3.2.1几个常用函数的导数及运算律一、回顾复习1.求函数的导数的方法是:(三步走:求增量,算比值,求极限)说明:上面的方法中把x换成x0即为求函数在点x0处的导数.2.函数f(x)在点x0处的导数就是导函数在x=x0处的函数值,即.这也是求函数在点x0处的导数的方法之一。)(0xf)(xf0|)()(0xxxfxf3.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.4.求切线方程的步骤:(1)求出函数在点x0处的变化率,得到曲线在点(x0,f(x0))的切线的斜率。0()fx(2)根据直线方程的点斜式写出切线方程,即000()()().yfxfxxx二、几种常见函数的导数根据导数的定义可以得出一些常见函数的导数公式.0()CC公式一:为常数:(),yfxC解1)函数y=f(x)=c的导数.()()0,yfxxfxCC0,yx0()lim0.xyfxCx二、几种常见函数的导数'1x公式二::(),yfxx解2)函数y=f(x)=x的导数.()()(),yfxxfxxxxx1,yx0()'lim1.xyfxxx二、几种常见函数的导数2'2xx公式三:()2:(),yfxx解3)函数y=f(x)=x2的导数.222()()()2,yfxxfxxxxxxx222,yxxxxxxx220002()()'limlimlim(2)2.xxxyxxxfxxxxxxx二、几种常见函数的导数211'xx公式三:()1:(),yfxx解4)函数y=f(x)=1/x的导数.11()()()xyfxxfxxxxxxx1,()yxxxx200111()()'limlim.()xxyfxxxxxxx21)()2)(),3)(),14)(),yfxCyfxxyfxxyfxx'1y21'yx'2yx表示y=x图象上每一点处的切线斜率都为1这又说明什么?'0y表示y=C图象上每一点处的切线斜率都为0这又说明什么?探究:画出函数y=1/x的图像。根据图像,描述它的变化情况。并求出曲线在点(1,1)处的切线方程。x+y-2=0y'=2x表示函数y=x2图象上每点(x,y)处的切线的斜率为2x,说明随着x的变化,切线的斜率也在变化公式:.)()(1Qnnxxnn请注意公式中的条件是,但根据我们所掌握的知识,只能就的情况加以证明.这个公式称为幂函数的导数公式.事实上n可以是任意实数.Qn*Nn()nfxx猜想?当时'f(x)=?11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()ln(0);6.(),'();17.()log,'()(0,1);ln8.nnxxxxafxcfxfxxfxnxfxxfxxfxxfxxfxafxaaafxefxefxxfxaaxa公式若则公式若则公式若则公式若则公式若则公式若则公式若则且公式若1()ln,'();fxxfxx则法则1:两个函数的和(差)的导数,等于这两个函数的导数的和(差),即:()()()()fxgxfxgx法则2:两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即:()()()()()()fxgxfxgxfxgx法则3:两个函数的商的导数,等于第一个函数的导数乘第二个函数,减去第一个函数乘第二个函数的导数,再除以第二个函数的平方.即:2()()()()()(()0)()()fxfxgxfxgxgxgxgx由法则2:()'()()()CfxCfxCfxCfx21)3(xxy32)1(3xxy221)2(xxyxytan)4(xxy)5(xxyln)6(答案:2(1)32;yx2221(3);(1)xyx21(4);cosyx2314(2);yxxxy23)5(题型一:导数公式及导数运算法则的应用例1:求下列函数的导数:xyln1)6(三.典例分析1.求下列函数的导数31)1(xy3)2(xy32)7(xytscos)3(xy3)4(62)6(xyxy21log)5(55)8(xy练习43)1(xytssin)3(3231)2(xyxy33ln)4(xy2ln1)5(512-)6(xy2)7(y425)8(xy例2.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,(1)求过点P的曲线y=x2的切线方程。(2)求过点Q的曲线y=x2的切线方程。(3)求与直线PQ平行的曲线y=x2的切线方程。三.典例分析题型二:求曲线的切线方程'2yx解(1),(2):2(1,1),(2,4)PQyx都是曲线上的点。11'|2,xPy过点的切线的斜率k22'|4,xy过Q点的切线的斜率k12(1),210Pyxxy过点的切线方程:即:。44(2),440yxxy过Q点的切线方程:即:。例2.已知P(-1,1),Q(2,4)是曲线y=x2上的两点,(1)求过点P的曲线y=x2的切线方程。(2)求过点Q的曲线y=x2的切线方程。(3)求与直线PQ平行的曲线y=x2的切线方程。三.典例分析题型:求曲线的切线方程'2yx解(3):411,21PQ直线的斜率k11,440214yxxy与PQ平行的切线方程:即:。00'|21,xxyx切线的斜率k01,2x11(,)24M切点xy1.已知求曲线在点(1,1)的处的切线方程.xy12.已知求曲线在点的处的切线方程.)212(,练习1012yx044yx解:设P(x0,y0)为切点,则切线斜率为k=f′(x0)=3x20-2故切线方程为y-y0=(3x20-2)(x-x0)①∵(x0,y0)在曲线上,∴y0=x30-2x0②又∵(1,-1)在切线上,解得x0=1或x0=-12.∴将②代入③式得-1-(x30-2x0)=(3x20-2)(1-x0).故所求的切线方程为:y+1=x-1或y+1=-54(x-1).即x-y-2=0或5x+4y-1=0.∴-1-y0=(3x20-2)(1-x0)③则切线斜率为k=1或k=-54化简得2x30-3x20+1=0.分解因式得(x0-1)2(2x0+1)=0.例3、求过点(1,-1)与曲线相切的直线方程.xxy23练习2:求抛物线y=14x2在点(4,74)处的切线方程.00,),xy解:设切点(01',2kyx又切线0001(),2yyxxx切线方程:74切线过(4,),20014yx①00071(4)42yxx,200017224yxx②0017xx解①②得:或149),44切点为(1,)或(7,11491(1)(4)4242yxyx切线方程:或24104490xyxy即:或14练习:点P是曲线y=ex上任意一点,求点P到直线y=x的最小距离.解:根据题意设平行于直线y=x的直线与曲线y=ex相切于点(x0,y0),该切点即为与y=x距离最近的点,如图.则在点(x0,y0)处的切线斜率为1,∵y′=(ex)′=ex,即y′|x=x0=1.∴ex0=1,得x0=0,代入y0=ex0,得y0=1,利用点到直线的距离公式得距离为22.即P(0,1).四、小结3.能结合其几何意义解决一些与切点、切线斜率有关的较为综合性问题.1.记熟几个常用函数的导数结论,并能熟练使用;(几个常用函数的导数及用导数定义求导数的方法步骤.)注意:在今后的求导运算中,只要不明确要求用定义证明,上述几个结论直接使用.2.几个常用函数的导数的物理意义和几何意义.基本初等函数的导数公式1、常函数:2、一次函数:3、幂函数:4、指数函数:0Ckbkx)(1)(nnnxx)10(ln)(aaaaaxx且特别:1x特别:xx2)(221)1(xx特别:xxee)(5、对数函数:)10(ln1log1)(logaaaxexxaa且6、三角函数:xxxxsin)(cos;cos)(sinxx1)(ln特别:1.完成:课时作业(二十五、二十六)要想获得真理和知识,惟有两件武器,那就是清晰的直觉和严格的演绎.——笛卡尔课外作业2.预习:3.3.1函数的单调性与导数0001205%()(15%).0110.0tpptpptp例:假设某国家在年期间的通货膨胀率为。物价(单位:元)与时间t(单位:年)有如下关系:其中为时的物价。假定某种商品的,那么在第个年头,这种商品的价格上涨的速度大约是多少?(精确到01)0'()1.05ln1.05tptp解:由导数公式:10'(10)1.05ln1.05p0.08(元/年)10.0答:在第个年头,这种商品的价格约以08元/年的速度上涨。0510p思考:若某种商品的,那么在第个年头,这种商品的价格上涨的速度大约是多少?0'()1.05ln1.05,tptp'(10)50.080.4p3:5284(80100).100xx例日常生活中的饮用水通常是经过净化的,随着水纯净度的提高,所需净化费用不断增加。已知1吨水净化到纯净度为x%时所需费用(单位:元)为:c(x)=求净化到下列纯净度时,所需净化费用的瞬时变化率;(1)90%;(2)98%.解:净化费用的瞬时变化率就是净化费用函数的导数。252845284'(100)5284(100)''())'100(100)xxcxxx=(25284(100)x20(100)5284(1)(100)xx25284'()(100)cxx.8纯净度为90%时,净化费用的瞬时变化率是524元/吨。25284(1)'(90)52.84(10090)c25284(2)'(98)1321(10098)c纯净度为98%时,净化费用的瞬时变化率是1321元/吨。

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功