36120151ChineseJournalofScientificInstrumentVol.36No.1Jan.20152014-08ReceivedDate2014-08*61301205、20112302120027、9140A17050114HT01054、HIT.NSRIF2014017*150080。、。。TP206+.3A510.4030Surveyonlithium-ionbatteryhealthassessmentandcyclelifeestimationLiuDatongZhouJianbaoGuoLimengPengYuSchoolofElectricalEngineeringandAutomationHarbinInstituteofTechnologyHarbin150080ChinaAbstractAslithium-ionbatteryiswidelyappliedthehealthassessmentandremainingcyclelifeestimationoflithi-um-ionbatterygraduallybecomeachallengeandresearchhotspotsinmanyfields.Inthispaperthecurrentre-searchstatusofthehealthmanagementandcyclelifepredictionisanalyzedtheremainingcyclelifepredictionap-proachesoflithium-ionbatteryaresummarized.InthissurveywemainlyanalyzetherelatedtopicsofremainingusefullifeestimationincludingbatterymanagementsystemBMSbatterydegradationidentificationcyclelifees-timation.Finallyacasestudyforaerospaceapplicationisdescribedtobrieflyinstantiatetherecentlydevelopedtechnology.Bysummarizingthepreliminaryresearchrelatedworkthefuturedevelopingtrendandchallengearean-alyzed.Keywordslithium-ionbatterybatterymanagementsystemremainingusefullifeestimationPHM1、、、、、Prius、Volt、LeafE6。、、、、1NASA、、ROSETTA。21、、、2362、。3。/、。3。4-6。1999AFRL2013787。、。、batterymanagementsystemBMS。7-8910、2BMS11。state-of-chargeSOCstate-of-healthSOH、。、。、。2BMS2.1BMSBMS、、、、。BMS212。BMS、、、、、、。1、BMS2BMS345、67BMS8、、、。BMS、3BMS。2.2SOCSOHBMS。SOC。SOC、、。SOC。912-13SOC、、、、、、、、、supportvectormachineSVMKalmanfilterKF、、。SOH。SOH。SOH3、KF、SOH212SOH。2.3BMSBMS13、、BMS。BMS//、、、、。BMS、、、、、、、、。、BMS、、、、。、、re-mainingusefullifeRUL、prognosticsandhealthmanagementPHM。RUL。、RUL。3、314。。RUL15。RUL11。、11。。RUL12、RUL。1RULFig.1SchematicdiagramofRULpredictionforlithium-ionbattery3.1、。。healthindexHIRUL。、16-17。18-19SOH。3.2。、。、、、。1、、、、、。2021SEI2220SEIFuller’s23436。2、、。242526。Moo27SOH。28—Ah-VSOH。SOH。3。SOH。29、、KFSOH。。19SOCDEKFSOH。30SOHDEKFSOH。electrochemicalimpedancespectros-copyEIS、ω。EIS、Warburg。31EIS。32EIS。33EIS。NASA34-35。Zenati36SOH。37、、SOH3。16SOHSOH。EIS2138-40。4Kim41EKFSOH。42DEKFSOH。43EKFSOCSOCSOH。SOH。。Widodo44HIWilliard45HISOHLiu46TIEDVDHIHI。1、。2。。。。3。EISEIS。。15、、。4RULRUL15。RUL12。RUL11。、47。、、48。RULRUL15。1RULRUL。RUL、49。4.1RUL、RUL50。、、。RUL、。1、、、、SOC、、11。、、。、SEI、。202151SEI525322℃EIS54、SEI55565758、、959、、60-63、1460-6164-65。RUL、12。6650。。2。6712636。Rint、RC68。PNGV69、CPE、Tanh707170。RC72RCRC。RC、73RC74。75。76-77。、78。、。3。。3479、80。RUL。EIS81-8324。84、2585、86。RULrelevancevectormachineRVM25、85RULRUL。。particlefilterPF24347981-828487、PFunscentedparticlefilterUPF82、PFsequentialimportanceresamplingPFSIR-PFPFauxiliarysequentialimportancere-samplingPFASIR-PF86、KF80、EKF83、KFun-scentedKFUKF、dualEKFDEKF88PFKF。PF89-90PF。。PFRUL、。、。PF。PFEKF。4.2RUL87。、、、RUL。。1ARARAR。AR。ARMAMAAR17AR、。AR91。AR/ARMAautoregressiveconditionalheteroscedasticARCH、generalizedautore-gressiveconditionalheterosecdasticGARCH、thresholdautoregressiveTAR、bi-linearmodels92。RULSaha93ARMA。ARMA87ARnonlineardegrada-tionARND-AR。94ARARRUL。AR、。AR。2artificialneuralnetworksANN、95。ANNRUL。2003ANNRUL96ANNRULANN97、ANN98ANN98。ANN。Liu99recursivelevenberg-marquardtRLMadaptiverecurrentneuralnetworkARNNRE、RCTTANNRUL。Rezvani100RUL。ANN101structuredneuralnetworkSNN、、SOCSNNSNNRUL。SNN。RULJon35ANNSigmoidRufus102ANNconfidencepredictionneuralnetworkCPNN。ANN1ANNANN。echostatenetworksESNLiu46ESNRULESN。2ANN。3ANNRUL102ANNRUL。4ANN。3supportvectormachineSVMVC103。SVMANN、、836。SVMANN。SVMLS-SVM。SVMSOC104-107SOH107。RULSVMRULSaha108EISRVMWidodo44、SVMNuhic109SVMFisher、RUL。SVMSVMSVM102Pattipati16RandlesL-HPPC、EISSVMRUL。SVMPattipati110hiddenmarkovmodelHMMSVMRULSVMHMMSVM。Rufus102SVMRUL。SVMMercer、、、SVM。4SVMrelevancevectormachineRVM111、、SVMRVM。RVM。RVM9RUL3489-90。RVMRUL44RVMRULSVM112RVMRUL。RVMRULRVMPFRUL3493RVMRVMPFRVMRUL。Pecht25RVM95%RUL。RVMSVM。RVMRVMRUL。5gaussianprocessregressionGPR。GPRRUL。Saha5RE+RCTGPRRE+RCTRUL。26RUL。GPR。4.3RULRUL。19113。RULPFSaha93RVM-PFPFEISRVMPFRVMRVMRUL。108RVMPFRVMPF。87PFARPFRULPF。96ANN、、ARMARUL。114RVM、SVM、ANN。、。4.4RULRUL1、、。2。3RUL、。、、。5、、、BMSBMS、。14667876521012BMS、、。、、。。5.146BMS。BMS、、、、115。、、、、、。BMSRUL。1。2RUL。RUL1RUL1036。2。5.21PF、GPRRVMRVM、RVMRUL。2FPGAASIC。reconfigurablecomputingRCRULFPGA、。FPGA。FPGA。115FPGA2。2RULFig.2Frameworkoflithium-ionbatteryRULpredictionmethodforaerospaceplatform、116。。RUL。5.3BMSFPGA。BMS3。3BMSFig.3ArchitectureblockdiagramofintelligentBMSplatform6、、。、、。1、23456/、78910。、111BMS、、、BMS、、。1.J.200630170-73.ANXYTANLSH.Developmentoflithium-ionbatter-iesasnewpowersourcesforspaceapplicationJ.Chi-neseJournalofPowerSources200630170-73.2LULHANXLIJetal.Areviewonthekeyissuesforlithium-ionbatterymanagementinelectricvehiclesJ.JournalofPowerSources2013226272-288.3STUARTTFANGFWANGXetal.Amodularbat-terymanagementsystemforHEVsC.InProceedingsoftheSAEFutureCarCongressArlingtonVAUSA20021-9.4.M.2009.TANWCH.SpacecraftsystemsengineeringM.Bei-jingSciencePress2009.5GOEBELKSAHABSAXENAAetal.Christophers-enprognosticsinbatteryhealthmanagementJ.IEEEInstrumentationandMeasurementMagazine200811433-40.6WILLIARDNHEWHENDRICKSCetal.Lessonslearnedfromthe787dreamlinerissueonlithium-ionbat-teryreliabilityJ.Energies2013694682-469