1解决几何最值问题的理论依据有:①两点之间线段最短;②垂线段最短;③三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值);④定圆中的所有弦中,直径最长;⑤圆外一点与圆心的连线上,该点和此直线与圆的近交点距离最短、远交点距离最长.根据不同特征转化从而减少变量是解决最值问题的关键,直接套用基本模型是解决几何最值问题的高效手段.解题模型一图形转化直线l外有一定点A,点B是直线l上的一个动点,求AB的最小值.过定点A作AB⊥l于点B.针对训练1.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为20.【答案】20【点睛】此题考查平移的性质,关键是根据当AE⊥BC时,四边形AEFD的周长最小进行分析.[来源:Z+xx+k.Com]解题模型二图形转化2A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值.作其中一个定点关于定直线l的对称点,连接对称点与另一定点.点A是l1上的动点,B,P是定点,求PA+AB的最小值.作点P关于直线l1的对称点P’,则P’B为PA+AB的最小值.针对训练2.如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是()A.ABB.DEC.BDD.AF【答案】D故选:D.#3【点睛】本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键.3.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为.【答案】.∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,4∴A'E=,即AD+DE的最小值是;故答案为:.【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考填空题中的压轴题.解题模型三图形转化P为定点,M,N为定直线上的动点,求△PMN周长的最小值.过定点P分别作关于两条定直线的对称点,连接两对称点.求直线l1,l2上的点M,N,使得四边形PQMN的周长最小.作定点Q关于直线l1的对称点Q’,作定点P关于直线l2的对称点P’,连接Q’P’,分别交直线l1,l2于点M,N针对训练4.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()5A.25°B.30°C.35°D.40°【答案】B∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.6【点睛】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.5.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【答案】.#∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,7【点睛】本题考查了轴对称,利用轴对称确定A′、E′,连接A′E′得出P、Q的位置是解题关键,又利用了相似三角形的判定与性质,图形分割法是求面积的重要方法.解题模型四图形转化直线m∥n,在m,n上分别求点M,N,使MN⊥m,且AM+MN+BN的值最小.[来源:]将点A向下平移MN的单位长度得A′,连接A′B,交n于点N,过点N作MN⊥m于M,点M,N即为所求.在直线l上求两点M,N(M在左),使MN=a,并使AM+MN+NB的值最小.将点A向右平移a个长度单位得A′,作A′关于l的对称点A″,连接A″B,交直线l于点N,将N点向左平移a个单位长度得M.针对训练6.如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=.8【答案】16【点睛】本题考查轴对称﹣最短问题、平行线的性质、平行四边形的判定和性质、勾股定理等知识,解题的关键是学会构建平行四边形解决问题,属于中考常考题型.%解题模型五图形转化9[来源:ZXXK]P是圆上一动点,求AP的最大值和最小值.当P点运动到点B时,AP取得最小值;当P点运动到点C时,AP取得最大值.P为圆内一定点,求过点P的弦的最小值与最大值.AB是过圆O内定点P的弦.当OP⊥AB时,过点P的弦的最小值为线段AB;过点P的弦的最大值为圆的直径.针对训练7.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是()A.2﹣2B.6C.2﹣2D.4【答案】A∴AE=EB′=2,∵AD=6,∴DE==2,10∴DB′=2﹣2.故选:A.【点睛】本题主要考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,确定点B′在何位置时,B′D的值最小,是解决问题的关键.8.如图,以AB为直径的⊙O的圆心O到直线l的距离OE=3,⊙O的半径r=2,直线AB不垂直于直线l,过点A,B分别作直线l的垂线,垂足分别为点D,C,则四边形ABCD的面积的最大值为12.【答案】最大值为12%【点睛】本题考查了梯形中位线:梯形的中位线平行于两底,并且等于两底和的一半.解题模型六图例[来源:Zxxk.Com]11圆柱――→展开则AB2=B′A2+B′B2长方体阶梯问题基本思路将立体图形展开成平面图形→利用两点之间线段最短确定最短路线→构造直角三角形→利用勾股定理求解.[来源:]针对训练9.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【答案】20【解析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.解:如图:#将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).12故答案为20.【点睛】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【答案】25【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.