专题五几何综合题例1(2018•广东)如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,求点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.(1)求证△ACF∽△DAE;(2)若S△AOC=,求DE的长;(3)连接EF,求证:EF是⊙O的切线.34(1)∵BC为⊙O的直径,∴∠BAC=90°,又∠ABC=30°,∴∠ACB=60°,又OA=OC,∴△OAC为等边三角形,即∠OAC=∠AOC=60°,∵AF为⊙O的切线,∴∠OAF=90°,∴∠CAF=∠AFC=30°,∵DE为⊙O的切线,∴∠DBC=∠OBE=90°,∴∠D=∠DEA=30°,∴∠D=∠CAF,∠DEA=∠AFC,∴△ACF∽△DAE;(2)∵△AOC为等边三角形,∴S△AOC=,∴OA=1,∴BC=2,OB=1,又∠D=∠BEO=30°,∴BD=,BE=,∴DE=;23344OA=23333(3)如图,过O作OM⊥EF于M,∵OA=OB,∠OAF=∠OBE=90°,∠BOE=∠AOF,∴△OAF≌△OBE,∴OE=OF,∵∠EOF=120°,∴∠OEM=∠OFM=30°,∴∠OEB=∠OEM=30°,即OE平分∠BEF,又∠OBE=∠OME=90°,∴OM=OB,∴EF为⊙O的切线.1.(2018•黔南州)如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.题组训练AE(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB,∴DE:DF=DB:DE,∴DE2=DF•DB;(3)连结DE,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴=,∵PA=AO,∴PA=AO=BO,∴=,即=,∴PD=4.PDPEPOPBPDPE232PDPD+232.(2018•包头)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,又AD=BD,∴△AED≌△BFD(ASA),∴AE=BF;12(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;3.(2018•娄底)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.34解:(1)∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B,(2)(i)∵BC2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,BCABBEBC∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=,设BE=4x,CE=3x,由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;34(ii)过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切.4.(2018•德州)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.解:(1)直线l与⊙O相切.理由:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴.∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.BECE=(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=7.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴,即,解得;AE=.∴AF=AE﹣EF=﹣7=.DEBEBEAE=477AE=4944942145.(2018•甘孜州)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cosC=,求AE的长.55(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;6.(2018•鄂州)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.12AEAC(1)如图,过点O作OF⊥AB于点F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切线;(2)如图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠ODC,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴=,∵tan∠D=,∴==,AEACCECD1212AEACCECD巩固练习1.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.(1)证:连接OC,∵PE是⊙O的切线,∴OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠BAD;(2)线段PB,AB之间的数量关系为:AB=3PB.理由:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵OB=OC,∴∠OCB=∠ABC,∵∠PCB+∠OCB=90°,∴∠PCB=∠PAC,∵∠P是公共角,∴△PCB∽△PAC,∴∴PC2=PB•PA,∵PB:PC=1:2,∴PC=2PB,∴PA=4PB,∴AB=3PB;(3)解:过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,∴OC=HE,∴AE=+OC,∵OC∥AE,∴△PCO∽△PEA,∴∵AB=3PB,AB=2OB,∴OB=PB,∴∴OC=∴AB=5,PCPBPAPC123232OCPOAEPA3232332PBPBOCPBOBPBABPBPBOC52∵△PBC∽△PCA,∴∴AC=2BC,在Rt△ABC中,AC2+BC2=AB2,∴(2BC)2+BC2=52,∴BC=∴AC=∴S△ABC=AC•BC=5.12PBBCPCAC525122.如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.(1)如图1,求⊙O的半径;(2)如图1,若点E是BC的中点,连接PE,求PE的长度;(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.解:(1)如图1,连接OD,OC,∵PC、PD是⊙O的两条切线,C、D为切点,∴∠ODP=∠OCP=90°,∵四边形ABCD是⊙O的内接正方形,∴∠DOC=90°,OD=OC,∴四边形DOCP是正方形,∵AB=4,∠ODC=∠OCD=45°,∴DO=CO=DC•sin45°=×4=;(2)如图1,连接EO,OP,∵点E是BC的中点,∴OE⊥BC,∠OCE=45°,则∠E0P=90°,∴EO=EC=2,OP=CO=4,22222∴PE==(3)证:如图2,在AB上截取BF=BM,∵AB=BC,BF=BM,∴AF=MC,∠BFM=∠BMF=45°,∵∠AMN=90°,∴∠AMF+∠NMC=45°,∠FAM+∠AMF=45°,∴∠FAM=∠NMC,∵由(1)得:PD=PC,∠DPC=90°,∴∠DCP=45°,∴∠MCN=135°,∵∠AFM=180°﹣∠BFM=135°,22OEOP25在△AFM和△CMN中∴△AFM≌△CMN(ASA),∴AM=MN.FAMCMNAFMCAFMMCN