推理填空专项1.已知:如图,AD⊥BC,FG⊥BC,∠1=∠2,求证:∠BAC=∠DEC.证明:∵AD⊥BC,FG⊥BC∴_____________=_____________=90゜∴AD∥FG()∴∠1=_______()∵∠1=∠2∴∠2=∠_______()∴__________________()∴∠BAC=∠DEC()2.已知:如图,∠B=∠C,∠A=∠D,求证:∠AMC=∠BND.证明:∵∠B=∠C∴AB∥_______()∴∠A=_______()∵∠A=∠D∴∠CEA=_______∴_______∥_______()∴∠EMB=_______∵__________________()∴∠AMC=_______3.已知:如图,AB∥DE,∠B=80゜,∠D=140゜,求∠BCD的度数.解:过C点作CF∥DE∵AB∥DE∴AB∥_______()∴∠B=∠_______()∠D+∠_______=180゜()∵∠B=80゜,∠D=140゜∴∠_____=___゜,∠_____=___゜∵∠BCD=∠_____-∠_____∴∠BCD=_______4.如图,已知∠1+∠2=180゜,∠3=∠B,且∠AFE=50゜.求∠ACB的度数.解:∵∠1+∠2=180゜()∠1+∠EDF=180゜()∴______=______()∴DF∥_______()∴∠3=_______()∵∠3=∠B()∴______=______()∴______∥______()∴∠AFE=______()∵∠AFE=50゜()∴∠ACB=____゜5.如图:已知BCAD,BCEF,21,试判断DG和BA的位置关系,并说明理由。证明:BCEF,BCAD090ADBEFB(垂直的定义)//ADEF()1()又21()2()DG∥BA()6.已知:如图,AB∥CD,EF分别交AB、CD于点E、F,EG平分∠AEF,FH平分∠EFD.求证:EG∥FH.证明:∵AB∥CD(已知)∴∠AEF=∠EFD()∵EG平分∠AEF()∴∠=21∠AEF(角平分线定义)∵FH平分∠EFD(已知)∴∠EFH=21∠EFD()∴∠=∠(等量代换)∴EG∥FH()3.已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°证明:∵HG∥AB(已知)∴∠1=∠3()又∵HG∥CD(已知)∴∠2=∠4()∵AB∥CD(已知)∴∠BEF+_____=180°()又∵EG平分∠BEF(已知)∴∠1=21∠______()又∵FG平分∠EFD(已知)∴∠2=21∠_______()∴∠1+∠2=21(_______+_________)∴∠1+∠2=90°∴∠3+∠4=90°()即:∠EGF=90°14.完成推理填空:如图:直线AB、CD被EF所截,若已知AB//CD,求证:∠1=∠C。请你认真完成下面填空。E证明:∵AB//CD(已知),A1B∴∠1=∠(两直线平行,)3又∵∠2=∠3,()CD∴∠1=∠C()。2F15.完成推理填空:如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE。请你认真完成下面的填空。证明:∵∠A=∠F(已知)∴AC∥DF(________________)∴∠D=∠(_____________)又∵∠C=∠D(已知),∴∠1=∠C(等量代换)∴BD∥CE()。16.如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°。请你认真完成下面的填空。证明:∵∠B=∠BGD(已知)∴AB∥CD(________________)∵∠DGF=∠F;(已知)∴CD∥EF(________________)∵AB∥EF(__________________)∴∠B+∠F=180°(_______________)。17.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______(2)∵∠3=∠5(已知),∴AB∥______,(_____________________________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(___________________________)218.已知,如图11,∠BAE+∠AED=180°,∠M=∠N,试说明:∠1=∠2.解:∵∠BAE+∠AED=180°(已知)∴∥()∴∠BAE=∠AEC()又∵∠M=∠N(已知)∴∥()∴∠NAE=∠AEM()∴∠BAE-∠NAE=-∴即∠1=∠219.如图,EF∥AD,∠1=∠2,∠BAC=70°。将求∠AGD的过程填写完整。解:∵EF∥AD()∴∠2=。()∵∠1=∠2()∴∠1=∠3。()∴AB∥。()∴∠BAC+=180°。()∵∠BAC=70°,()∴∠AGD=。CDG1FB2E3A20.如图,∠5=∠CDA=∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空:∵∠5=∠CDA(已知)∴//()∵∠5=∠ABC(已知)∴//()∵∠2=∠3(已知)∴//()∵∠BAD+∠CDA=180°(已知)∴//()∵∠5=∠CDA(已知),又∵∠5与∠BCD互补()∠CDA与互补(邻补角定义)∴∠BCD=∠6()∴//()