1两条直线的位置关系(第1课时)两条直线相交所成的角宜君县尧生中学李仲夏课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解邻角、补角、邻补角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程”,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标.本节内容在教材中处于非常重要的地位,起着承前启后的作用。因此,本节课的目标是:21.知识与技能:在具体情境中了解相交线、平行线、邻角、补角、邻补角、对顶角的定义,知道同角或等角的补角相等、对顶角相等,并能解决一些实际问题。2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。三、教学过程设计本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致用,步步为营;第四环节:拓展延伸,综合应用;第五环节:学有所思,反馈巩固;第六环节:布置作业,能力延伸。第一环节走进生活引入课题活动内容一:两条直线的位置关系1、通过向学生展示一些生活中的图片,让学生观察生化中的两条直线之间的位置关系;2、通过两支比的移动让学生更加清晰平行和相交指的是同一平面呢;让学生发现不在同一平面内的两条直线之间还存在异面这种位置关系,激发学生学习的欲望和动力。活动目的:独立思考、学会思考是创新的核心。数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值的数学。充分利用现代化教学手段加强直观教学,引起学生学习的兴趣:通过师生互动,生生互动,增加学生之间的凝聚力,在相互探讨中激发学生学习积极性,提高学课堂效率。3活动注意事项:在实际教学中可让学生自由搜寻,课堂上让学生充分发表自己的见解,清晰的表达自己的想法。学生搜集的信息是丰富多彩的,教师应注意捕捉有效信息,从激励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。第二环节动手实践探究新知动手实践一请学生动手画出两条直线直线AB和直线CD,交于点O。.问题1:图中有几个小于180度的角?问题2观察该∠1和∠2的位置有什么关系?问题3:图中还有那些角也具有这样的位置关系?得出结论:邻角:结论:∠1和∠2有公共的顶点,有一条公共边。问题4:接下来我们再思考,∠1和∠2有怎样的数量关系?问题5:图中是否还存在具有这样的数量关系的角呢?得出结论:结论:∠1与∠2的和为180度对邻角和补角的小结:小结1:既相邻又互补的角称为邻补角。活动目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,积累数学活动经验。设置以上循序渐进的问题,目的是通过创设生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的活动素材,使学生在自主学习的过程中,学会对邻角、补角、邻补角的概念及其性质。同时进一步培养学生抽象几何图形进行建模的能力。活动注意事项:创新意识的培养应贯穿教育的始终,因此教师应将活动过程充分放手给学生,同时培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。让学生在活动中积累经验,增加浓郁的学习氛围。动手实践二2314ABCD4仍然观察刚才画的图提出问题:问题1:除了刚才找到的邻补角关系外还有没有别的关系的角?问题2:它们有怎样的位置关系?小结2:对顶角:有公共顶点,两边互为反向延长线的一组角,我们称它们互为对顶角。问题3:进一步观察,这两对对顶角有怎样的数量关系?小结3:对顶角性质:对顶角相等活动目的:通过继续观察,可以加深学生对概念的理解,在相互交流中,初步形成评价与反思的意识,在相互补充、相互学习中,体验“对顶角相等”与两条直线夹角大小无关;在合作共赢中,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。活动注意事项:教师首先应关注全体学生是否积极思考?是否进行有效讨论?巩第三环节学以致用,步步为营练习:下列各图中,∠1和∠2是对顶角的是()活动目的:通过习题的深入研究,可以引导学生透过问题看本质、通过本质找规律、通过规律找方法。重视发展学生思维,培养学生数学能力最有效途径之一。活动注意事项:学生可能会认为概念和性质不难理解,但认识中却存在不清晰的地方。此处应给学生充分的讨论与思考的时间,可以分组讨论合作,也可以现场辩论,充分发挥学生的作用,让他们之间思维互相碰撞,在争论中发现问题要比盲目的接受知识更有意义,特别是学生之间通过合作学来的知识更能在脑海中留下深刻的印象。第四环节拓展延伸,综合应用12121212ABCD5练习:∠AOB是一平角,∠AOC是∠BOC的三倍,那么∠AOC、∠BOC分别是多少度?活动目的:通过问题的设置,不仅高效率的复习了本节的知识点,而且让学生再次体会到设列未知数的重要性!该问题设置提高了学生的探索意识和创新意识的形成,激发了学生的学习兴趣和探究欲。活动的注意事项:鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,对出现的错误,一定进行积极的辨析,让学生学会解决的方法。第五环节学有所思反馈巩固归纳总结:1.你学到了哪些知识点?2.你学到了哪些方法?3.你还有哪些困惑?4.教师引导思维导图。活动目的:本环节的设置使学生学会从系统的角度把握知识方法,努力使知识结构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归纳学习方法及解题方法的能力。锻炼学生组织语言及表达能力,经历与同伴分享成果的快乐过程。活动注意事项:教师一定让学生畅谈自己的切身感受,对于知识点的整合,更要有所思考,达到对所学知识巩固的目的。鼓励其他学生进行补充纠正,教师也应进行适时的点拨和强调。第六环节布置作业能力延伸1.基础题:书P42页习题2.1第1,2题2.提高题:书P42页习题2.1第3,4,5题活动目的:作业应该体现出课堂学习的延续性,因此本节课我也精心设计了相应的作业题目。活动注意事项:首先应激励学生独立完成作业,其次注意提高效率,最后应鼓励学生进行反思。四、教学设计反思:61.开放课堂激发潜能数学来源于生活,反之又服务于生活。本课时我遵循“开放”的原则,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,体会本节课的重要性和在生活中的广泛应用;通过课堂开放,可以让学生在直观有趣的问题情境中学到有价值的数学;学生搜集的信息是丰富多彩的,有利于教师给学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发了学生的潜能,使学生成为课堂的主人,提高了学生分析问题解决问题的能力!2.动手操作探究新知“几何直觉是增进数学理解力的很有效的途径,而且它可以使人增加勇气,提高修养。”通过动手画图,可以加深学生对知识的理解,这也是促使学生认真审题的重要方法。3.巧设问题串打造高效课堂我在教材提供的教学素材的基础上,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的学习环境,知识由易到难,由简到繁,争取能让每一位学生都能领略到成功的喜悦!使学生思维分层递进,揭示概念的实质,不断完善新的知识结构,同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力;鼓励学生从多角度思考问题,充分激发学生的创新能力,使学生的思维多向开花,极大的调动学生学习数学的热情!4.注意事项。课堂上让学生充分发表自己的见解。学生搜集的信息是丰富多彩的,学生的思维也是百花齐放,教师应注意捕捉有效信息,从激励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应注重学生几何语言的培养,7对课堂生成的问题,应予以重视,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。