上海市黄浦区2020年初中毕业学业考试数学模拟试卷(解析版)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020年上海市黄浦区初中毕业学业考试数学模拟试卷考试时间:100分钟满分:150分班级:___________姓名:___________学号:___________成绩:___________一.选择题(共6小题,满分18分,每小题3分)1.(3分)如果线段a=2,c=8,那么线段a和c的比例中项b是()A.4B.16C.±4D.±162.(3分)在Rt△ABC中,∠C=90°,BC=4,AB=5,那么sinB的值是()A.B.C.D.3.(3分)已知非零向量、,且有=﹣2,下列说法中,不正确的是()A.||=2||B.∥C.与方向相反D.+2=04.(3分)将抛物线y=(x+1)2﹣3向右平移2个单位后得到的新抛物线的表达式为()A.y=(x﹣1)2﹣3B.y=(x+3)2﹣3C.y=(x+1)2﹣1D.y=(x+1)2﹣55.(3分)如图,△ABC∽△ADE,且BC=2DE,则的值为()A.B.C.D.6.(3分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5二.填空题(共12小题,满分48分,每小题4分)7.(4分)计算:2(3﹣2)+(﹣2)=.8.(4分)在△ABC中,D、E分别是边AB、AC上的点,如果AD=2,DB=1,AE=4,EC=2,那么的值为.9.(4分)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果,DF=15,那么线段DE的长是.10.(4分)已知线段AB=6cm,点C为AB的黄金分割点,且AC>BC,则AC=.11.(4分)若一条抛物线的顶点在y轴上,则这条抛物线的表达式可以是(只需写一个).12.(4分)如图,在正方形网格中,点A,B,C是小正方形的顶点,那么tan∠BAC的值为.13.(4分)等腰三角形的两边是4和6,则底角的正弦值为.14.(4分)如图,正方形ABCD的对角线BD所在的直线上有点E、F,且∠E+∠F=45°,ED=2,设BD=x,BF=y,则y关于x的函数关系式是.15.(4分)如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是厘米.16.(4分)如图,已知等腰△ABC中,顶角∠A=36°,BD为∠ABC的平分线,则的值等于.17.(4分)如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果AG=5,BF=6,那么线段CE的长是.18.(4分)已知△ABC∽△A'B'C',S△ABC:S△A'B'C'=1:4,若AB=2,则A'B'的长为.三.解答题(共7小题,共78分)19.计算:3tan30°﹣+cos45°+20.如图,▱ABCD中,AB∥CD,AD∥BC,点F是CD的中点,BF和AC相交于点E.(1)求的值;(2)如果,,请用、表示AE.21.如图,一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为a,其中tana=2,无人机的飞行高度AH为500米,桥的长度为1255米.(1)求点H到桥左端点P的距离;(2)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.22.在平面直角坐标系xOy中,已知抛物线y=﹣﹣x+2,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且cot∠ABC=2,求点B坐标.23.如图,平行四边形ABCD的对角线AC、BD相交于点O,点E是边BC的延长线上一点,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:.24.如图1,抛物线W:y=ax2﹣2的顶点为点A,与x轴的负半轴交于点D,直线AB交抛物线W于另一点C,点B的坐标为(1,0).(1)求直线AB的解析式;(2)过点C作CE⊥x轴,交x轴于点E,若AC平分∠DCE,求抛物线W的解析式;(3)若a=,将抛物线W向下平移m(m>0)个单位得到抛物线W1,如图2,记抛物线W1的顶点为A1,与x轴负半轴的交点为D1,与射线BC的交点为C1.问:在平移的过程中,tan∠D1C1B是否恒为定值?若是,请求出tan∠D1C1B的值;若不是,请说明理由.25.如图,平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,点B在x轴的正半轴上,以AB为斜边向上作等腰直角△ABC,BC交y轴于点D,C(﹣2,4).(1)如图1,求点B的坐标;(2)如图2,动点E从点O出发以每秒1个单位长度的速度沿y轴的正半轴运动,设运动时间为t秒,连接CE,设△ECD的面积为S,请用含t的式子来表示S;(3)如图3,在(2)的条件下,当点E在OD的延长线上时,点F在直线CE的下方,且CF⊥CE,CF=CE.连接AD,取AD的中点M,连接FM并延长交AO于点N,连接FO,当S△NFO=10S△AMN时,求S的值.2020年上海市黄浦区初中毕业学业考试数学模拟试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.(3分)如果线段a=2,c=8,那么线段a和c的比例中项b是()A.4B.16C.±4D.±16【分析】根据比例中项的定义可得b2=ac,从而易求b.【解答】解:∵b是a、c的比例中项,∴b2=ac,即b2=2×8=16,b=4(负数舍去).故选:A.2.(3分)在Rt△ABC中,∠C=90°,BC=4,AB=5,那么sinB的值是()A.B.C.D.【分析】根据勾股定理,可得AC的长,根据正弦函数的定义,可得答案.【解答】解:在Rt△ABC中,由勾股定理,得AC==3.sinB==,故选:A.3.(3分)已知非零向量、,且有=﹣2,下列说法中,不正确的是()A.||=2||B.∥C.与方向相反D.+2=0【分析】根据非零向量、,有=﹣2,即可推出||=2||,∥,与方向相反,+2=,由此即可判断.【解答】解:∵非零向量、,且有=﹣2,∴||=2||,∥,与方向相反,+2=,故A,B,C正确,D错误,故选:D.4.(3分)将抛物线y=(x+1)2﹣3向右平移2个单位后得到的新抛物线的表达式为()A.y=(x﹣1)2﹣3B.y=(x+3)2﹣3C.y=(x+1)2﹣1D.y=(x+1)2﹣5【分析】根据平移的规律即可求得答案.【解答】解:∵将抛物线y=(x+1)2﹣3向右平移2个单位,∴新抛物线的表达式为y=(x+1﹣2)2﹣3=(x﹣1)2﹣3,故选:A.5.(3分)如图,△ABC∽△ADE,且BC=2DE,则的值为()A.B.C.D.【分析】根据相似三角形的性质解答即可.【解答】解:∵△ABC∽△ADE,且BC=2DE,∴,∴,故选:B.6.(3分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5【分析】直接利用相似三角形的性质得出对应边之间的关系进而得出答案.【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.二.填空题(共12小题,满分48分,每小题4分)7.(4分)计算:2(3﹣2)+(﹣2)=﹣3+4.【分析】根据平面向量的加法法则计算即可.【解答】解:2(3﹣2)+(﹣2)=6﹣4+﹣2=﹣3+4,故答案为﹣3+4.8.(4分)在△ABC中,D、E分别是边AB、AC上的点,如果AD=2,DB=1,AE=4,EC=2,那么的值为.【分析】首先证明DE∥BC,再利用相似三角形的性质解决问题即可.【解答】解:如图,∵AD=2,DB=1,AE=4,EC=2,∴==2,∴DE∥BC,∴△ADE∽△ABC,∴===,故答案为.9.(4分)如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果,DF=15,那么线段DE的长是6.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AD∥BE∥CF,∴,∵DF=15,∴,解得:DE=6,故答案为:610.(4分)已知线段AB=6cm,点C为AB的黄金分割点,且AC>BC,则AC=3﹣3.【分析】根据黄金分割点的定义,知AC是较长线段;所以AC=AB,代入数据即可得出AC的长度.【解答】解:由于C为线段AB=6的黄金分割点,且AC>BC,则AC=a==3﹣3.故答案为:3﹣3.11.(4分)若一条抛物线的顶点在y轴上,则这条抛物线的表达式可以是y=2x2(答案不唯一)(只需写一个).【分析】抛物线的顶点在y轴上,可得出b=0,从而得出抛物线的解析式(答案不唯一).【解答】解:∵抛物线的顶点在y轴上,∴b=0,∴抛物线的解析式为y=2x2,故答案为y=2x2(答案不唯一).12.(4分)如图,在正方形网格中,点A,B,C是小正方形的顶点,那么tan∠BAC的值为2.【分析】连接BC,构造直角三角形,利用网格和勾股定理求出AB、BC,利用正切的意义求出tan∠BAC的值即可.【解答】解:连接BC,则AB⊥BC,在Rt△ABC中,AB==,BC==2,∴tan∠BAC===2,故答案为:2.13.(4分)等腰三角形的两边是4和6,则底角的正弦值为或.【分析】首先过点A作AD⊥BC于点D,然后分别从若AB=AC=4,BC=6,与若AB=AC=6,BC=4,去分析求解即可求得答案.【解答】解:如图,过点A作AD⊥BC于点D,①若AB=AC=4,BC=6,则BD=BC=3,∴AD==,∴sin∠B=;②若AB=AC=6,BC=4,则BD=BC=2,∴AD==4,∴sin∠B==.∴底角的正弦值为:或.故答案为:或.14.(4分)如图,正方形ABCD的对角线BD所在的直线上有点E、F,且∠E+∠F=45°,ED=2,设BD=x,BF=y,则y关于x的函数关系式是..【分析】易得用x表示的BC与CD,进而证明△BCF∽△DEC,利用对应边成比例可得y与x之间的关系式.【解答】解:∵四边形ABCD是正方形,∴∠DBC=∠BDC=45°,∴CD=BD×sin45°=x,∠FBC=∠EDC=135°,∴BC=CD=x,∵∠E+∠F=45°,∠F+∠BCF=45°,∴∠E=∠BCF,∴△BCF∽△DEC,∴=,=,∴y=x2;故答案为y=x2.15.(4分)如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是9.6厘米.【分析】直接利用勾股定理得出BF的长,再利用相似三角形的判定与性质得出答案.【解答】解:如图所示:作BE⊥AE于点E,由题意可得,BC=6cm,CF=DC=8cm,故BF===10(cm),可得:∠CFB=∠BAE,∠C=∠AEB,故△BFC∽△BAE,∴=,∴=,解得:BE=9.6.故答案为:9.6.16.(4分)如图,已知等腰△ABC中,顶角∠A=36°,BD为∠ABC的平分线,则的值等于.【分析】根据角平分线的性质以及已知条件推知∠C=∠C,∠A=∠CBD=36°,所以△ACB∽△BCD;然后根据相似三角形的对应边成比例求得AC:BC=BC:DC;最后由等腰三角形的性质BC=CD=DA,求出即可.【解答】解:假设AB=AC=1.则在△ACB和△BCD中,∠C=∠C,∠A=∠CBD=36°,∴△ACB∽△BCD,∴AC:BC=BC:DC;而BC=BD=DA(等腰三角形的性质),∴设AD=x(x>0).则CD=1﹣x.1:x=x:(1﹣x),解得,x=.故答案是:.17.(4分)如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果AG=5,BF=6,那么线段CE的长是.【分析】如图,延长AG交BC于K.根据重心的性质以及勾股定理即可解决问题.【解答】解:如图,延长AG交BC于K.∵点G是△ABC的重心,∴AG=2GK,BG=2GF,CG=2EG,∵AG=5,BF=6,∴GK=,BG=4,∵CE⊥BF,∴∠B

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功