角的平分线上的点到角的两边的距离相等角的平分线的性质:OCB1A2PDEPD⊥OA,PE⊥OB∵OC是∠AOB的平分线∴PD=PE用数学语言表述:反过来,到一个角的两边的距离相等的点是否一定在这个角的平分线上呢?已知:如图,QD⊥OA,QE⊥OB,点D、E为垂足,QD=QE.求证:点Q在∠AOB的平分线上.证明:∵QD⊥OA,QE⊥OB(已知),∴∠QDO=∠QEO=90°(垂直的定义)在Rt△QDO和Rt△QEO中QO=QO(公共边)QD=QE∴Rt△QDO≌Rt△QEO(HL)∴∠QOD=∠QOE∴点Q在∠AOB的平分线上已知:如图,QD⊥OA,QE⊥OB,点D、E为垂足,QD=QE.求证:点Q在∠AOB的平分线上.到角的两边的距离相等的点在角的平分线上。∵QD⊥OA,QE⊥OB,QD=QE.∴点Q在∠AOB的平分线上.用数学语言表示为:例:如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,且BE=CF。求证:AD是△ABC的角平分线。ABCEFD1、如图,已知△ABC的外角∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于MGHM∴FG=FM又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC∴FM=FH∴FG=FH∴点F在∠DAE的平分线上∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC2、如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB、BC、CA的距离相等∵BM是△ABC的角平分线,点P在BM上,ABCPMNDEF∴PD=PE同理,PE=PF.∴PD=PE=PF.即点P到三边AB、BC、CA的距离相等证明:过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F利用结论,解决问题练一练1、如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应在何处修建?2、直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:()A.一处B.两处C.三处D.四处D到角的两边的距离相等的点在角的平分线上。∵QD⊥OA,QE⊥OB,QD=QE.∴点Q在∠AOB的平分线上.用数学语言表示为:角的平分线上的点到角的两边的距离相等.∵QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上∴QD=QE课堂检测1、已知:BD⊥AM于点D,CE⊥AN于点E,BD,CE交于点F,CF=BF,求证:点F在∠A的平分线上.AAAAAAADNEBFMCA