§11.3.1角平分线的性质地调学校数学教研组不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?AOBC活动1再打开纸片,看看折痕与这个角有何关系?(对折)1、如图,是一个角平分仪,其中AB=AD,BC=DC。将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?活动2ADBCE如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?2、证明:在△ACD和△ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)∴△ACD≌△ACB(SSS)∴∠CAD=∠CAB(全等三角形的对应边相等)∴AC平分∠DAB(角平分线的定义)ADBCE根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器)OABCENOMCENM2.分别以M,N为圆心.大于MN的长为半径作弧.两弧在∠AOB的内部交于C.21如何用尺规作角的平分线?ABOMNC作法:1.以O为圆心,适当长为半径作弧,交OA于M,交OBN于.3.作射线OC.则射线OC即为所求.尺规作角的平分线ABMNC为什么OC是角平分线呢?OO想一想:已知:OM=ON,MC=NC。求证:OC平分∠AOB。证明:在△OMC和△ONC中,OM=ON,MC=NC,OC=OC,∴△OMC≌△ONC(SSS)∴∠MOC=∠NOC即:OC平分∠AOB探究角平分线的性质(1)实验:将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?(2)猜想:角的平分线上的点到角的两边的距离相等.探究角平分线的性质证明:∵OC平分∠AOB(已知)∴∠1=∠2(角平分线的定义)∵PD⊥OA,PE⊥OB(已知)∴∠PDO=∠PEO(垂直的定义)在△PDO和△PEO中∠PDO=∠PEO(已证)∠1=∠2(已证)OP=OP(公共边)∴△PDO≌△PEO(AAS)∴PD=PE(全等三角形的对应边相等)PAOBCED12已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E求证:PD=PE活动5(3)验证猜想角平分线上的点到角两边的距离相等。活动5利用此性质怎样书写推理过程?∵∠1=∠2,PD⊥OA,PE⊥OB(已知)∴PD=PE(全等三角形的对应边相等)PAOBCED12思考:要在S区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺1:20000)SO公路铁路活如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;求证:CF=EBACDEBF分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即Rt△CDF≌Rt△EDB.现已有一个条件BD=DF(斜边相等),还需要我们找什么条件DC=DE(因为角的平分线的性质)再用HL证明.试试自己写证明。你一定行!角平分线性质:角平分线上的点到这个角的两边距离相等.已知:(如图)OC平分∠AOB,P是OC上一点,PD⊥OA,PE⊥OB求证:PD=PE证明:∵OC平分∠AOB,P是OC上一点(已知)∴∠DOP=∠BOP(角平分线定义)∵PD⊥OA,PE⊥OB(已知)∴∠ODP=∠OEP=90°(垂直的定义)在△OPD和△OPE中∠DOP=∠BOP(已证)∠ODP=∠OEP(已证)OP=OP(已知)∴△ADC≌△ABC(AAS)∴PD=PE(全等三角形对应边相等)几何语言:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB∴PD=PE(角平分线上的点到这个角的两边距离相等).EDOABPC已知:OC平分∠AOB,点P在OC上,PD⊥OA于D,PE⊥OB于E求证:PD=PEAOBEDPC例1:结论:在角平分线上的点到角的两边的距离相等题设:一个点在一个角的平分线上结论:它到角的两边的距离相等已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E.求证:PD=PE.AOBPED操作测量:OC是∠AOB的平分线,点P是射线OC上的任意一点,1.操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:2.观察测量结果,猜想线段PD与PE的大小关系,写出结论:____________PDPE第一次第二次第三次COBAPD=PEpDE验证结论已知:如图,OC是∠AOB的平分线,P是OC上任意一点PD⊥OA,PE⊥OB,垂足分别是D,E.求证:PD=PE.而△OPD≌△OPE的条件由已知易知它满足定理(AAS).故结论可证.老师期望:你能写出规范的证明过程.分析:要证明PD=PE,只要证明它们所在的△OPD≌△OPE,角平分线上的点到这个角的两边距离相等.OCB1A2PDE能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:PD=PEOC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.角的平分线的性质:在角的平分线上的点到角的两边的距离相等.B如图所示OC是∠AOB的平分线,P是OC上任意一点,问PE=PD?为什么?OAEDCPPD,PE没有垂直OA,OB,它们不是角平分线上任一点这个角两边的距离,所以不一定相等1.要在S区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺1:20000)SO公路铁路2.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P.求证:点P到三边AB,BC,CA所在直线的距离相等.ABCDEPFGHBP回味无穷定理角平分线上的点到这个角的两边距离相等.∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).用尺规作角的平分线.小结拓展OCB1A2PDE已知:如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,F在AC上BD=DF,求证:CF=EB。DFECBA应用与提高证明:∵AD平分∠CABDE⊥AB,∠C=90°(已知)∴CD=DE(角平分线的性质)在Rt△CDF和Rt△EDB中,CD=DE(已证)DF=DB(已知)∴Rt△CDF≌Rt△EDB(HL)∴CF=EB(全等三角形对应边相等)做一做驶向胜利的彼岸已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:EB=FC.BAEDCF回味无穷定理角平分线上的点到这个角的两边距离相等.∵OC是∠AOB的平分线,P是OC上任意一点PD⊥OA,PE⊥OB,垂足分别是D,E(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).用尺规作角的平分线.小结拓展OCB1A2PDE