点到直线的距离公式人教版高中数学必修2-2点到直线的距离点到直线的距离xyOlP(x0,y0)Q点到直线的距离的定义点到直线的距离公式的推导过程过点作直线的垂线,垂足为点,线段的长度叫做点到直线的距离.PlQPQPl已知点P(x0,y0)和直线lAx+By+C=0,(假设A、B≠0)求点P到直线l的距离.xyOlP(x0,y0)Q创设情境返回反思:这种解法的优缺点是什么?xyOlP(x0,y0)Q思考:最容易想到的方法是什么?思路①.依据定义求距离,其流程为:求l的垂线l1的方程解方程组,得交点Q的坐标求PQ尝试合作交流xyO思路②利用直角三角形的面积公式的算法:0lAxByC00,Pxy·Q·RS··d还有其它方法吗?过程设计:过点作轴、轴的垂线交于点求出利用勾股定理求出根据面积相等知得到点到的距离用表示点的坐标PxylSR、00xy、SR、PRPS、RSdRSPRPSPldPQ方法②利用直角三角形面积公式的算法框图思路②:P(x0,y0),l:Ax+By+C=0,设AB≠0,OyxldQPR100,,,,;ABlxypxlRxy这时与轴轴都相交,过作轴的平行线交与点S02,,ylSxy作轴的平行线交与点10020,0AxByCAxByC0012,ByCAxCxyAB00000102,AxByCAxByCxxyyAPRSBP222200ABPRPSAxBCRABSyOyxldQPRS0022AxByCdAB22000000.ABdAxByCABAxByCAxByCAB由三角形面积公式可得:dRSPRPS反思2:反思1:在使用该公式前,须将直线方程化为一般式.辨析反思返回前面我们是在A,B均不为零的假设下推导出公式的,若A,B中有一个为零,公式是否仍然成立?点到直线距离公式点到直线()的距离为00(,)Pxy0AxByC0AB其中、不同时为0022AxByCdAB注:A=0或B=0,此公式也成立,但当A=0或B=0时一般不用此公式计算距离.例1:求点P(-1,2)到直线①2x+y-10=0;②3x=2的距离。解:①根据点到直线的距离公式,得521210211222d②如图,直线3x=2平行于y轴,Oyxl:3x=2P(-1,2)35)1(32d用公式验证,结果怎样?例2:求平行线2x-7y+8=0与2x-7y-6=0的距离。Oyxl2:2x-7y-6=0l1:2x-7y+8=0P(3,0)两平行线间的距离处处相等在l2上任取一点,例如P(3,0)P到l1的距离等于l1与l2的距离5353145314)7(28073222d❋直线到直线的距离转化为点到直线的距离任意两条平行直线都可以写成如下形式:l1:Ax+By+C1=0l2:Ax+By+C2=0Oyxl2l1PQ1002,lPxyPl在直线上任取一点,过点作直线的垂线,垂足为Q002222AxByCPlAB则点到直线的距离为:PQ10010PlAxByC点在直线上,001AxByC2122CCABPQ思考:任意两条平行线的距离是多少呢?注:用两平行线间距离公式须将方程中x、y的系数化为对应相同的形式。(两平行线间的距离公式)点到直线的距离2200BACByAxd1.此公式的作用是求点到直线的距离;2.此公式是在A、B≠0的前提下推导的;3.如果A=0或B=0,此公式恰好也成立;4.如果A=0或B=0,一般不用此公式;5.用此公式时直线要先化成一般式。小结尝试回忆1.点到直线的距离:2200BACByAxd2.两平行线间的距离公式:2212||BACCd要记牢哦!很重要的!