29同济第六版(高等数学课后习题解答)下册

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第八章多元函数微分法及其应用第一节多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域;理解二重极限概念,注意Ayxfyxyx),(lim),(),(00是点),(yx以任何方式趋于),(00yx;注意理解本节中相关概念与一元函数中相应内容的区分与联系。习题8-11.求下列函数表达式:(1)xyyxyxf),(,求),(yxxyf解:(,)()xyxyfxyxyxyxy(2)22),(yxyxyxf,求),(yxf解:(,)()()(,)fxyxyxyxyfxyxy2.求下列函数的定义域,并绘出定义域的图形:(1)221)1ln(yxxyxz解:22221011010xyxyxyxyx(2))12ln(2yxz解:2210xy(3)|)|||1ln(),(yxyxf解:1||||0||||1xyxy3.求下列极限:(1)22)1,0(),(1limyxxyxyx解:22(,)(0,1)1lim1xyxxyxy(2)xyxyyx42lim)0,0(),(解一:(,)(0,0)(,)(0,0)(,)(0,0)1124148lim2lim2lim4xyxyxyxyxyxyxyxyxy解二:(,)(0,0)(,)(0,0)(,)(0,0)244(4)11limlimlim4(24)(24)xyxyxyxyxyxyxyxyxy(3)yxyxyx)sin()2(lim)0,1(),((4)22220011limyxyxyx解一:(,)(1,0)(,)(1,0)sin()sin()lim(2)lim[(2)]3xyxyxyxyxxxyxy解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim(2)lim(2)lim(2)3xyxyxyxyxyxxxxyy(4)22220011limyxyxyx解一:2222222222220000001111limlimlim()022xxxyyyxyxyyxxyxyxy解二:222222222222222200000011limlimlim0()(11)11xxxyyyxyxyxyxyxyxyxyxy4.证明下列函数当)0,0(),(yx时极限不存在:(1)2222),(yxyxyxf解:222222222222001limlim1xxykxxyxkxkxyxkxk(2)22222)(),(yxyxyxyxf解:224222400limlim1()xxyxxyxxyxyx2222200lim0()xyxyxyxy5.下列函数在何处是间断的?(1)yxz1解:xy(2)xyxyz2222解:22yx第二节偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(yxfz在),(00yx的某一邻域有定义,则xyxfyxxfyxfxx),(),(lim),(0000000,yyxfyyxfyxfyy),(),(lim),(0000000.),(00yxfx的几何意义为曲线0),(yyyxfz在点)),(,,(0000yxfyxM处的切线对x轴的斜率.),(yxf在任意点),(yx处的偏导数),(yxfx、),(yxfy称为偏导函数,简称偏导数.求),(yxfx时,只需把y视为常数,对x求导即可.2.高阶偏导数),(yxfz的偏导数),(),,(yxfyxfyx的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推.二阶偏导数依求导次序不同,有如下4个:xyzyxzyzxz222222,,,,其中后两个称为混合偏导数.若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题8-21.求下列函数的一阶偏导数:(1)xyyxz解:21,zzxyxxyyy(2)xyzarctan解:2222222111,1()1()zyyzxyyxxxyyxxyxx(3))ln(22yxxz解:22222211(1)zxxxxyxyxy222222221()zyyyxxyxyxxyxy(4))ln(222zyxu解:222222222222,,uxuyuzxxyzyxyzzxyz(5)yzxztdteu2解:22222222,,xzyzyzxzuuuzezeyexexyz(6)xyyxzcossin解:2211coscossinsin,coscossinsinzxyyxyuxxyxyxyyxxyxyyyxxyx(7)yxxyz)1((8))cos(eu解:(1)[ln(1)],(1)[ln(1)]11xyxyzxyuxyxyxyyxyxyxxxyyxy(8))cos(eu解:[cos()sin()],[cos()sin()]uuee2.求下列函数在指定点处的一阶偏导数:(1)yxyxzarcsin)1(2,求)1,0(xz解:20(0,1)lim0xxxzx(2)xyxexzyarctan)1(2,求)0,1(yz解:01(1,0)lim1yyyezy3.求下列函数的高阶偏导数:(1))ln(xyxz,求22xz,22yz,yxz2解:ln()1,zzxxyxyy22222211,,zzxzxxyyxyy(2))2(cos2yxz,求22xz,22yz,yxz2,xyz2解:2cos(2)sin(2)sin2(2)zxyxyxyx4cos(2)sin(2)2sin2(2)zxyxyxyy222222cos2(2),8cos2(2),4cos2(2)zzzxyxyxyxyxy(3)22yxxtdtez,求22xz,yxz2解:22222222222,2(12),4xyxxyxxyzzzxeexeexyexxxy4.设000),(22222233yxyxyxxyyxyxf,求)0,0(xyf和)0,0(yxf.解:00(0)(0,0)00(0,0)limlim0xxxfxffxx,00(0,)(0,0)00(0,0)limlim0yyyfyffyy4224222224(,),0()xxxyyfxyyxyxy4224222224(,),0()yxxyyfxyxxyxy54000(0,)(0,0)(0,0)limlim1xxxyyyyfyfyfyy54000(,0)(0,0)(0,0)limlim1xxyxxxxfxfxfxx5.设)11(yxez,求证zyzyxzx222解:1111()()2211,xyxyzzeexxyy111111()()()2222221122xyxyxyzzxyxeyeezxyxy6.设222zyxr,证明rzryrxr2222222证明:22222223222,rxrxrrxxrrxxrxrxrrrxyz由轮换对称性,2222222323,rryrrzyrzr222222222223321rrrrxyzrxyzrrr第三节全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(yxfz在点),(00yx处的全增量z表示成22),(yxoyBxAz则称),(yxfz在点),(00yx可微,并称BdyAdxyBxA为),(yxfz在点),(00yx的全微分,记作dz.2.可微的必要条件:若),(yxfz在),(00yx可微,则(1)),(yxf在),(00yx处连续;(2)),(yxf在),(00yx处可偏导,且),(),,(0000yxfByxfAyx,从而dyyxfdxyxfdzyx),(),(0000.一般地,对于区域D内可微函数,dyyxfdxyxfdzyx),(),(.3.可微的充分条件:若),(yxfz在),(00yx的某邻域内可偏导,且偏导数在),(00yx处连续,则),(yxfz在),(00yx可微。注:以上定义和充分条件、必要条件均可推广至多元函数。习题8-31.求下列函数的全微分(1)22lnyxz(2)xyyxz1arctan解:2222222211d()ddddln()22xyxxyyzxyxyxy(2)xyyxz1arctan解:21dd11()1xyzxyxyxy22222222(1)(1)(dd)()(dd)(1)d(1)d(1)()(1)(1)()xyxyxyxyyxxyyxxyxyxyxyxyxy(3)0,sinyyzx解:sinlnsinlnsinsinddd(sinln)(coslndd)xyxyxxzeexyyxyxyy(4)22yxzu解:22222222222222dddddddxxyyxyzzxyzzxyxyzuxyxyxy223222()d(dd)()xyzzxxyyxy(5))(222zyxxeu解:222222()()222ddd[()]xxyzxxyzueexxyz222222d[()]()d(2d2d2d)xxyzxyzxxxxyyzz222(3)d2d2d)xyzxxyyxzz所以222222()()222dd[(3)d2d2d)]xxyzxxyzueexyzxxyyxzz(6)yzxu解:lnlnddd(dlndlnd)yzyzxyzxyzuxeexzxyyxzx(dlndlnd)yzyzxxzxyyxzx2.求函数)1ln(22yxz,当2,1yx时的全微分.解:222(dd)d1xxyyzxy(1,2)2(d2d)2d|(d2d)1143xyzxy3.求函数xyz,当2.0,1.0,1,2yxyx时的全增量与全微分.解:(2,1)2dd20.20.1dd|0.1254xyyxzzx(20.1,10.2)(2,1)0.811.62.10.5||0.1192.124.24.2yyzxx4.研究函数)0,0(),(0)0,0(),(1sin)(),(2222yxyxyxyxyxf在点)0,0(处的可微性.解:由于222200001lim(,)lim()sin0(0,0)xxyyfxyxyfxy,所以(,)fxy在点(0,0)连续,又2220001sin0(,0)(0,0)1(0,0)limlimlimsin0

1 / 111
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功