第第33章章钛及钛合金钛及钛合金3.13.1概述概述3.23.2纯钛纯钛3.33.3钛合金钛合金3.43.4钛合金的应用钛合金的应用3.1概述1791年英国化学家格雷戈尔研究钛铁矿和金红石时发现了钛。1795年,德国化学家克拉普罗特在分析匈牙利产的金红石时也发现了这种元素。格雷戈尔和克拉普罗特当时所发现的钛是粉末状的二氧化钛,而不是金属钛。到1910年美国化学家亨特第一次制得纯度达99.9%的金属钛。钛在地壳中的丰度占第七位,0.42%,金属占第四位(铝、铁、镁、钛)。以钛铁矿或金红石为原料生产出高纯度四氯化钛,再用镁作为还原剂将四氯化钛中的钛还原出来,由于还原后得到钛类似海绵状所以称为海绵钛,最后以海绵钛为原料生产出钛材和钛粉。1947年才开始冶炼,当年产量只有2吨。1955年产量2万吨。1975年产量7万吨。2006年产量14万吨钛的硬度与钢铁差不多,而它的重量几乎只有同体积钢铁的一半,钛虽然比铝重,它的硬度却比铝大2倍。在宇宙火箭和导弹中,已大量用钛代替钢铁。极细的钛粉,还是火箭的好燃料,所以钛被誉为宇宙金属,空间金属。⑴密度小,比强度高:钛密度为4.51g/cm3,约为钢或镍合金的一半。比强度高于铝合金及高合金钢。⑵导热系数小:钛的导热系数小,是低碳钢的五分之一,铜的二十五分之一。⑶无磁性,无毒:钛是无磁性金属,在很大的磁场中不被磁化,无毒且与人体组织及血液有很好的相容性。⑷抗阻尼性能强:钛受到机械振动及电振动后,与钢、铜相比,其自身振动衰减时间最长。⑸耐热性佳:因熔点高,使得钛被列为耐高温金属。⑹耐低温:可在低温下保持良好的韧性及塑性,是低温容器的理想材料。⑺吸气性能高:钛的化学性质非常活泼,在高温下容易与碳、氢、氮及氧发生反应。⑻耐蚀性佳:在空气中或含氧的介质中,钛表面生成一层致密的、附著力强、惰性大的氧化膜,保护钛基体不被腐蚀。3.2纯钛3.2纯钛物理性能:属ⅣB族元素,原子序数为22,原子量为47.9。有两种同素异晶体,其转变温度为882.5℃。低于882.5℃,为密排六方α-Ti:点阵常数(20℃)为:a=0.295111nm,c=0.468433nm,c/a=1.5873882.5℃~熔点,为体心立方β-Ti:点阵常数在25℃时,a=0.3282nm;900℃时a=0.33065nm。密度为4.5。钛的弹性模量低,只有铁的一半。熔点1668℃,导电性较差(仅为铜的3.1%),导热系数(铁的六分之一)和线胀系数(与玻璃的相近)均较低。钛无磁性,在强磁场下也不会磁化,用钛制人造骨和关节植入人体内不会受雷雨天气的影响。钛阻尼性低,适宜做共振材料。当温度低于0.49K时,钛呈现超导特性,经过适当合金化,超导温度可提高到9~10K。化学性质:室温下钛比较稳定,高温下很活泼,熔化态能与绝大多数坩埚或造型材料发生作用。高温下与卤素、氧、硫、碳、氮等进行强烈反应。钛在真空或惰性气氛下熔炼,如真空自耗电弧炉、电子束炉、等离子熔炉等设备中熔炼。钛在氮气中加热即能发生燃烧,钛尘在空气中有爆炸危险,所以钛材加热和焊接宜用氩气作保护气体。钛在室温可吸收氢气,在500℃以上吸气能力尤为强烈,故可作为高真空电子仪器的脱气剂;利用钛吸氢和放氢的特性,可以作储氢材料。3.2纯钛耐蚀性能:钛的标准电极电位很低(E=-1.63V),但钛的致钝电位亦低,故钛容易钝化。常温下钛表面极易形成由氧化物和氮化物组成的钝化膜,它在大气及许多浸蚀性介质中非常稳定,具有很好的抗蚀性。在大气、海水、氯化物水溶液及氧化性酸(硝酸、铬酸等)和大多数有机酸中,其抗蚀性相当于或超过不锈钢,在海水中耐蚀性极强,可与白金相比,是海洋开发工程理想的材料。钛与生物体有很好相容性,而且无毒,适做生物工程材料。钛在还原性酸(浓硫酸、盐酸、正磷酸)、氢氟酸、氯气、热强碱、某些热浓有机酸及氧化铝溶液中不稳定,会发生强烈腐蚀。另外,钛合金有热盐应力腐蚀倾向。钛在550℃以下能与氧形成致密的氧化膜,具有良好的保护作用。在538℃以下,钛的氧化符合抛物线规律。但在800℃以上,氧化膜会分解,氧原子以氧化膜为转换层进入金属晶格,此时氧化膜已失去保护作用,使钛很快氧化。3.2纯钛力学性能:纯钛性能和纯铁相似,塑性好,延伸率可达50~60%,断面收缩率可达70~80%,强度不太高(300MPa)。纯钛力学性能与纯度有关:间隙杂质(氧、氮、碳)含量增加,其强度升高,塑性陡降。常温下钛为密排六方结构,与其他六方结构的金属(镉、锌、镁)相比,钛的塑性要高得多。原因是:滑移模型和晶体中各晶面的层错能有关,如层错能低,则有利于全位错分解为不全位错,以促进滑移的继续进行;钛的层错能比基面小,原来在基面上进行滑移的位错容易通过交滑移而转移到棱柱面上,并可发生分解,这样基面上的滑移很快终止,而棱柱面上的滑移则发挥着主导作用。反之,对于基面层错能比较低的金属,如镉、锌、镁,则{0001}是主要滑移面。3.2纯钛纯钛的强度随温度的升高而降低,加热到250℃时抗拉强度减小一半。500℃以下加热时断面收缩率变化很小,而伸长率却连续下降;500℃以上,ψ和δ随温度提高而增加,接近转变温度时,出现超塑性(δ100%)。纯钛有很好的低温塑性,特别是间隙元素含量很低的α型合金适宜在低温下使用,如在火箭发动机或载人飞船上作超低温容器。钛的疲劳性能特点与钢类似,具有比较明显的物理疲劳极限,纯钛的反复弯曲疲劳极限为0.6~0.80σb,钛的疲劳性能对金属表面状态及应力集中系数比较敏感。钛的耐热性比铁和镍低。这与钛原子自扩散系数大和存在同素异晶转变有关。钛的耐磨性较差,通过渗氮、碳、硼可提高其耐磨性。3.2纯钛钛可进行锻造、轧制、挤压、冲压等各种压力加工,原则上加热钢材所采用的设备都可以用于钛材加热,要求炉内气氛保持中性或弱氧化性气氛,绝不允许使用氢气加热。钛的屈强比(σ0.2/σb)较高,一般在0.70~0.95之间,变形抗力大,而钛的弹性模量相对较低,因此钛材在加工成型时比较困难。纯钛具有良好的焊接性能,焊缝强度、延性和抗蚀性与母材相差不多。为防止焊接时的污染,须采用钨极氩气保护焊。钛的切削加工比较困难,主要原因是钛的摩擦系数大,导热性差,热量主要集中在刀尖上,使刀尖很快软化。同时钛的化学活性高,温度升高容易粘附刀具,造成粘结磨损。在切削加工时,应正确选用刀具材料,保持刀具锋锐,并采用良好的冷却。工艺性能3.2纯钛杂质元素对钛性能的影响杂质元素主要有氧、氮、碳、氢、铁和硅。前四种属间隙型元素,后二种属置换型元素,可以固溶在α相或β相中,也可以化合物形式存在。钛的硬度对间隙型杂质元素很敏感,杂质含量愈多,钛的硬度就愈高。综合考虑间隙元素对硬度的影响,引入氧当量:O当=O%+2N%十0.67%。氧当量和硬度的关系为:HV=65+310·O0.5当。3.2纯钛氢对纯钛及钛合金性能的影响就是引起氢脆。氢在β-Ti中的溶解度比α-Ti中大得多,且在α-Ti中的溶解度随温度降低而急剧减少,当冷却到室温时,会析出脆性的氢化物TiH2,使合金变脆,称为氢化物氢脆。含氢的α-Ti在应力作用下,促进氢化物析出,由此导致的脆性叫做应力感生氢化物氢脆。溶解在钛晶格中的氢原子,在应力作用下,经过一定时间会扩散到晶体缺陷处,与那里的位错发生交互作用,使位错被钉扎,引起塑性降低。当应力去除并静止一段时间,再进行高速变形时,塑性又可以恢复,这种脆性称为可逆氢脆。钛及钛合金中氢含量小于0.015%时,可避免氢化物型氢脆,但无法避免应力感生氢化物氢脆和可逆氢脆。减少氢脆的措施是减少氢含量,如严格控制原材料纯度、采用真空熔炼、用中性或弱氧化性气氛加热、惰性气体保护焊接、尽量避免酸洗增氢等。用真空退火去氢。3.2纯钛氢可增加高温形变时塑性,即提高热塑性或超塑性。生产上暂时将氢渗入合金中,然后高温变形,再通过真空退火去氢。增塑的原因是氢降低形变激活能,即降低原子扩散迁移所必须克服的能垒,提高了变形过程中扩散协调变形能力;同时氢原子在高温下分布比较均匀,减小了局部弹性畸变;氢有促进晶粒细化作用,从而改善高温热塑性。氮、氧、碳都提高α+β/β相变温度,扩大α相区,属α稳定元素。均可提高强度,急剧降低塑性,其影响程度按氮、氧、碳递减。为了保证合金的塑性和韧性,目前在工业钛合金中氢、氧、氮、碳含量分别控制在0.015%、0.15%、0.05%,0.1%以下。低温用钛及钛合金,由于氧、氮和碳提高塑-脆转化温度,应尽量降低它们的含量,特别是氧含量。微量铁和硅在固溶范围内与钛形成置换固溶体,它们对钛的性能影响没有间隙杂质元素那样强烈。作为杂质时,铁和硅的含量分别要求小于0.3%和0.15%,但有时也作为合金元素加入。3.2纯钛纯钛组织基本形态:形变再结晶退火后,α相呈等轴状,称等轴α;β相区缓慢冷却,α相以集束片状形式沿β晶界和晶内有规则的析出,此类形态称魏氏α;β相区快冷,则发生马氏体转变,马氏体形态与纯度有关:高纯钛中呈锯齿状,工业纯钛中呈片状,两者均属板条状马氏体。3.2纯钛工业纯钛的牌号、性能及用途工业纯钛退火得到单相α组织,属α型钛合金。工业纯钛根据杂质含量不同分为TAl、TA2、TA3、TA4,其中TA为α型钛合金的代号,数字表示合金的序号。随着序号增大,钛的纯度降低,抗拉强度提高,塑性下降。纯钛只能冷变形强化。当变形度大于30%以后,强度增加缓慢,塑性不再明显降低。纯钛的热处理:再结晶退火(540~700℃)和去应力退火(450~600℃),退火后均采用空冷。工业纯钛可制成板、管、棒、线、带材等半成品。工业纯钛可作为重要的耐蚀结构材料,用于化工设备、滨海发电装置、海水淡化装置和舰艇零部件。3.2纯钛3.2纯钛新牌号新牌号ASTMASTM牌号牌号旧牌号旧牌号TA1TA1Gr1Gr1TA0TA0TA2TA2Gr2Gr2TA1TA1TA3TA3Gr3Gr3TA2TA2TA4TA4Gr4Gr4TA3TA3TA28TA28TA4TA4按组织类型分:α(用TA表示):全α、近α和α+化合物合金。以铝、锡、锆为主要合金元素,在近α型钛合金中还添加少量β稳定化元素,如钼、钒、钽、铌、钨、铜、硅等β(用TB表示):热力学稳定型β合金、亚稳定β型合金和近β型合金α+β(用TC表示):以Ti-Al为基再加适量β稳定元素TA4Ti-3AlTA7Ti-5Al-2.5SnTA8Ti-5Al-2.5Sn-3Cu-1.5ZrTC1Ti-2Al-1.5MnTC3Ti-4Al-4VTC4Ti-6Al-4VTC6Ti-6Al-1.5Cr-2.5Mo-0.5Fe-0.3SiTB2Ti-5Mo-5V-3Cr-3Al3.3钛合金-分类、牌号3.3钛合金-合金化与α和β均形成连续固溶体相图:锆、铪与钛同族,有相同晶体结构和同素异晶转变,与α-Ti及β-Ti形成连续固溶体。与β-Ti无限互溶,与α-Ti有限溶解的相图:钒、铌、钽、钼都为体心立方结构,与β-Ti同晶,称为β同晶元素。降低相变点,稳定β相。组元达到一定浓度值后,高温β相可稳定到室温,对应这一浓度值称为临界浓度Ck。Ck反映合金元素稳定β相能力大小,其值越小稳定β相能力就越大。稳定β相能力按钼、钒、钽、铌次序递减。加入这类元素的钛合金组织稳定性好,不会发生共析转变或包析转变,同时能强化β相,并保持良好的塑性。3.3钛合金-合金化3.3钛合金-合金化与α、β钛均有限溶解,并具有共析转变的相图:Cr、Mn、Fe、Co、Ni、Cu、Si、Bi、W、H在β-Ti中溶解度比在α-Ti中大,降低(α+β)/β相变温度,其稳定β相的能力比β同晶元素要大。这类元素与钛易形成化合物,如Ti-Mn系中形成TiMn(θ)等化合物,含有这类元素的合金从β相区冷到共析温度时,β相发生共析分解,这类元素称为β共析元素。铬、钨能与β-Ti完全互溶,但因原子尺寸或电化学性质与钛相差较大,在固态还有共析转变,因此归入β共析元素。Ti-Cr系共析转变产物为α+TiCr2。Ti-W系为α+β2(β2为富钨固溶体),不存在金属化合物。锰、铁、铬共析转变速度极慢,热处理条件下难以进