应用时间序列实验报告材料

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实用文档文案大全河南工程学院课程设计《时间序列分析课程设计》学生姓名学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年6月2日实用文档文案大全考核项目考核内容得分平时考核(20分)出勤情况、实训态度、效率;知识掌握情况、基本操作技能、知识应用能力、获取知识能力实验一(20分)完成此实验并获得实验结果实验二(20分)完成此实验并获得实验结果实验三(20分)完成此实验并获得实验结果文档资料(20分)表达能力、文档写作能力和文档的规范性总评成绩指导教师评语:实用文档文案大全目录1.实验一澳大利亚常住人口变动分析.....................11.1实验目的............................................................11.2实验原理............................................................11.3实验内容............................................................21.4实验过程............................................................32.实验二我国铁路货运量分析...........................82.1实验目的............................................................82.2实验原理............................................................82.3实验内容............................................................92.4实验过程...........................................................103.实验三美国月度事故死亡数据分析.....................143.1实验目的...........................................................143.2实验原理...........................................................153.3实验内容...........................................................153.4实验过程...........................................................16课程设计体会...........................................19实用文档文案大全实用文档文案大全1.实验一澳大利亚常住人口变动分析1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。表1-163.267.955.849.550.255.449.945.348.161.755.253.149.559.930.630.433.842.135.828.432.944.145.536.639.549.848.82937.334.247.637.339.247.643.94951.260.86748.965.465.467.662.555.149.657.347.345.544.54847.949.148.859.451.651.460.960.956.858.662.16460.364.67179.459.983.475.480.255.958.565.269.559.121.562.5170-47.462.26033.135.343.442.758.434.4(1)判断该序列的平稳性与纯随机性。(2)选择适当模型拟合该序列的发展。(3)绘制该序列拟合及未来5年预测序列图。1.1实验目的掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。1.2实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。实用文档文案大全(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。1.3实验内容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的范围有界。如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。对自相关图进行检验时,可以用SAS系统ARIMA过程中的IDENTIFY语句来做自相关图。而单位根检验我们用到的是DF检验。以1阶自回归序列为例:11tttxx该序列的特征方程为:0特征根为:当特征根在单位圆内时:11该序列平稳。当特征根在单位圆上或单位圆外时:11该序列非平稳。对于纯随机性检验,既白噪声检验,可以用SAS系统中的IDENTIFY语句来输出白噪声检验的结果。(2)选择适当模型拟合该序列的发展实用文档文案大全先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。ARIMA过程的第一步是要IDENTIFY命令对该序列的平稳性和纯随机性进行识别,并对平稳非白噪序列估计拟合模型的阶数。使用命令如下:procprintdata=example3_20;IDENTIFYVAR=peoplenlag=8minicp=(0:5)q=(0:5);run;(3)绘制该序列拟合及未来5年预测序列图模型拟合好之后,利用该模型对序列进行短期预测。预测命令如下:forecastlead=5id=timeout=results;run;其中,lead指定预期数;id指定时间变量标识;out指定预测后期的结果存入某个数据集。利用存储在临时数据集RESULTS里的数据,我们可以绘制拟合预测图,相关命令如下:procgplotdata=results;plotpeople*time=1forecast*time=2l95*time=3u95*time=3/overlay;symbol1c=redi=nonev=star;symbol2c=blacki=joinv=none;symbol3c=greeni=joinv=nonel=32;run;1.4实验过程按照实验的过程运行程序,对程序结果的分析如下:(1)判断该序列的平稳性与纯随机性实用文档文案大全图1-11971年9月-1993年6月澳大利亚季度常住人口变动序列时序图时序图显示澳大利亚季度常住人口围绕在52千人附近随机波动,没有明显趋势或周期,基本可视为平稳模式。图1-2序列自相关图自相关图显示该序列的自相关系数一直都比较小,始终控制在2倍的标准差范围以内,故认为该序列是平稳序列。图1-3序列的单位根检验结果根据第五列、第六列输出的结果我们可以判断,当显著性水平取0.05时,实用文档文案大全序列非平稳,但当消除线性趋势之后序列平稳。图1-4白噪声检验输出结果可以看到延迟6阶、12阶的检验P值均小于0.05,故拒绝原假设,认为该序列为非白噪声序列(非纯随机序列)。(2)选择适当模型拟合该序列的发展图1-5IDENTIFY命令输出的最小信息量结果最后一条信息显示,在自相关延迟阶数也小于等于5的所有ARMA(p,q)模型中,BIC信息量相对于最小的是ARMA(1,3)模型。图1-6ESTIMATE命令输出的未知参数结果图1-7ESTIMATE命令输出的拟合统计量结果实用文档文案大全图1-8ESTIMATE命令输出的系数矩阵图1-9ESTIMATE命令输出的残差自相关检验结果从输出结果可以看出由于延迟各阶的LB统计量的P值均显著大于(0.05),所以该拟合模型显著成立。图1-10ESTIMATE命令输出的拟合模型形式该输出形式等价于:23(10.62415B0.253693B0.2953B)ttx或记为:1230.624150.2536930.2953tttttx(3)绘制该序列拟合及未来5年预测序列图图1-11FORECAST命令输出的5年预测结果拟合效果图如图1-11:实用文档文案大全图1-12拟合效果图实用文档文案大全2.实验二我国铁路货运量分析我国1949—2008年每年铁路货运量(单位:万吨)数据如表2-1所示。表2-1年货运量年货运量年货运量19495589196953120198915148919509983197068132199015068119511108319717647119911528931952132171972808731992157627195316131197383111199316279419541928819747877219941632161955193761975889551995165982195624605197684066199617102419572742119779530919971721491958381091978110119199816430919595441019791118931999167554196067219198011127920001785811961449881981107673200119318919623526119821134952002204956196336418198311878420032242481964417861984124074200424901719654910019851307092005269296196654951198613563520062882241967430891987140653200731423719684209519881449482008330354请选择适当的模型拟合该序列,并预测2009—2013年我国铁路货运量。2.1实验目的掌握用SAS软件对数据进行相关性分析,掌握对非平稳时间序列的随机分析,选择合适模型,拟合序列发展。2.2实验原理ARIMA模型的预测和ARMA模型的预测方法非常类似。(p,d,q)ARIMA模型的一般表示方法为:实用文档文案大全(B)(B)dttx同时可以简记为:(B)(B)dttx式中,t为零均值白噪声序列。我们可以从上式看出,ARIMA模型的实质就是差分与ARMA模型的组合,这说明任何非平稳序列如果能通过适当阶数的差分实现差分后平稳,就可以对差分后序列进行ARMA模型拟合。(1)对差分平稳后的序列可以使用ARIMA模型进行拟合,ARIMA建模操作流程如图2-1所示。图2-1建模流程2.3实验内容由于ARMA模型是ARIMA模型的一种特例,所以在SAS系统中这两种模型的拟合都放在ARMA过程中。先利用时序图分析模型是否平稳,可以运用实验一的程序来实现。再对该序平稳性检验白噪声检验分析结束通过差分运算拟合ARMA模型未通过平稳不平稳获得观察值序列实用文档文案大全列进行1阶差分运算,同时考虑差分后序列的平稳性,添加如下命令:difhuoyunliang=dif(huoyunliang);命令“difhuoyunliang=dif(huoyunliang);”是指令系统对变量进行的1阶差分后的序列值赋值给变量difhuoyunliang,其中dif()是差分函数。利用差分函数得出平稳模型。再对模型进行定阶和进行预测。模型定阶:identifyvar=difhuoyunliang(1)nlag=8mi

1 / 28
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功