生活中的轴对称教学目的使学生进一步认识轴对称图形,通过动手实验,掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。重点、难点重点:轴对称图形的对应线段相等、对应角相等。难点:两个图形成轴对称与轴对称图形两个概念的区别与联系。一、复习、评讲.复习轴对称图形的定义。.评讲上节课的作业,使学生进一步掌握判断一个图形是否是轴对称图形。二、新课.什么是两个图形成轴对称?试验:发给每位同学右边两个图形的纸张,把纸张沿着虚线折叠,观察对折后的左边部分和右边部分是否完全重合?像这样,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两图形重合时互相重合的点)叫做对称点。练习:在上图的()中,把、、的对称点标出来。试验:在纸上滴上墨水,把纸张对折,随后打开,看看形成的两块墨迹是不是关于折痕对称?它的对称轴是哪一条?把它画出来。.轴对称图形(或关于某条直线成对称的两个图形)沿对称轴对折后的两部分完全重合,所以它的对应线段(对折后重合的线段)相等,对应角(对折后重合的角)相等。.轴对称图形与两个图形成轴对称的区别与联系.如图(),如果沿着虚线对折,直线两旁的部分会完全重合,那么这个图形就是轴对称图形;若把这个图形看成是左右两部分,则这两个图形就是关于虚线这条直线成轴对称。如图(),如果沿着虚线折叠,右边的图形会与左边的图形完全重合,那么就说这两个图形关于虚线这条直线成轴对称,若把()中的左右两个四边形看成是一个整体的图形,那么这个整体的图形是轴对称图形。因此,轴对称图形和两个图形成轴对称的本质是相同的,只是怎么看图形的问题。三、巩固练习.下面哪些选项的右边图形与左边图形成轴对称?.如图,若沿虚线对折,左边部分与右边部分重合,请找出图中、、的对称点,并说出图中有哪些角相等?哪些线段相等?四、课堂小结成轴对称的两个图形是完全重合的,因此,它们的对应线段相等,对应角相等;知道轴对称和轴对称图形的区别与联系。五、作业课本习题第、题。虽然在学习的过程中会遇到许多不顺心的事,但古人说得好——吃一堑,长一智。多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。没有失败和挫折的人,是永远不会成功的。快乐学习并不是说一味的笑,而是采用学生容易接受的快乐方式把知识灌输到学生的大脑里。因为快乐学习是没有什么大的压力的,人在没有压力的情况下会表现得更好。青春的执迷和坚持会撑起你的整个世界,愿你做自己生命中的船长,在属于你的海洋中一帆风顺,珍惜生命并感受生活的真谛!老师知道你的字可以写得更漂亮一些的,对吗,智者千虑,必有一失;愚者千虑,必有一得,学习必须与实干相结合,学习,就要有灵魂,有精神和有热情,它们支持着你的全部!灵魂,认识到自我存在,认识到你该做的是什么;精神,让你不倒下,让你坚强,让你不畏困难强敌;热情,就是时刻提醒你,终点就在不远方,只要努力便会成功的声音,他是灵魂与精神的养料,它是力量的源泉。