切比雪夫低通滤波器设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课程设计说明书课程设计任务书2010—2011学年第一学期专业:通信工程学号:姓名:课程设计名称:数字信号处理课程设计设计题目:切比雪夫Ⅰ型低通滤波器的软件实现完成期限:自年月日至年月日共周一.设计目的1.巩固所学的理论知识。2.提高综合运用所学理论知识独立分析和解决问题的能力。3.更好地将理论与实践相结合。4.掌握信号分析与处理的基本方法与实现。5.熟练使用MATLAB语言进行编程实现。二.设计内容用MATLAB编程设计切比雪夫I型低通滤波器,各参数要求如下:fp=100Hz,αp=2dB,fs=120Hz,αs=60dB。三、设计要求给出所设计滤波器的幅度及幅度衰减特性并分析是否满足设计需要。四.设计条件计算机、MATLAB语言环境五、参考资料[1]《数字信号处理》(第三版),丁玉美,高西全.西安电子科技大学出版社,2000.[2]《MATLAB及在电子信息课程中的应用》,陈怀堔,吴大正,高西全.电子工业出版社,2006.[3]《MATLAB7.0从入门到精通》,求是科技.人民邮电出版社,2006.[4]《数字信号处理(第三版)》学习指导,高西全,丁玉美.西安科技大学出版社,2001.指导教师(签字):教研室主任(签字):批准日期:年月日课程设计说明书摘要随着信息和数字时代的到来,数字信号处理已成为当今一门极其重要的学科和技术领域。在现代通信系统中,由于信号中经常混有各种复杂成分,因此很多信号的处理都是基于滤波器而进行的。所以,数字滤波器在数字信号处理中起着举足轻重的作用。而数字滤波器的设计都要以模拟滤波器为基础的,这是因为模拟滤波器的理论和设计方方法都已发展的相当成熟,且有典型的模拟滤波器供我们选择。,如巴特沃思滤波器、切比雪夫滤波器等。本次课程设计将运用MATLAB设计一个基于切比雪夫低通滤波器,并出所设计滤波器的幅度及幅度衰减特性。关键词:模拟低通滤波切比雪夫课程设计说明书目录1课题描述................................................................................................................12设计原理................................................................................................................12.1滤波器的分类..................................................................................................22.2模拟滤波器的设计指标..................................................................................22.3切比雪夫I型滤波器......................................................................................32.3.1切比雪夫低通滤波器的设计原理...........................................................32.3.2切比雪夫低通滤波器的设计步骤...........................................................63设计内容................................................................................................................73.1用MATLAB编程实现...................................................................................73.2设计结果分析..................................................................................................84总结......................................................................................................................105参考文献..............................................................................................................11课程设计说明书11课题描述数字滤波器是数字信号处理的重要工具之一,它通过数值运算处理改变输入信号所含频率成分的相对比例或者滤出某些频率成分的数字器件或程序,而数字滤波器处理精度高、体积小、稳定、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。故本课题使用MATLAB信号处理箱和运用切比雪夫法设计数字低通滤波器。2设计原理2.1切比雪夫滤波器介绍在巴特沃兹滤波器中,幅度响应在通带和阻带内都是单调的。因此,若滤波器的技术要求是用最大通带和阻带的逼近误差来给出的话,那么,在靠近通带低频端和阻带截止频率以上的部分都会超出技术指标。一种比较有效的途径是使逼近误差均匀地分布于通带或阻带内,或同时在通带和阻带内都均匀分布,这样往往可以降低所要求的滤波器阶次。通过选择一种具有等波纹特性而不是单调特性的逼近方法可以实现这一点。切比雪夫型滤波器就具有这种性质:其频率响应的幅度既可以在通带中是等波纹的,而在阻带中是单调的(称为I型切比雪夫滤波器),也可以在通带中是单调的,而在阻带中是等波纹的(称为II型切比雪夫滤波器)。I型切比雪夫滤波器的幅度平方函数是2|)(|jHC=)/(1122cNC(2.1)式中为N阶切比雪夫多项式,定义为)coscos()(1xNxCN(2.2)从定义切比雪夫多项式可以直接得出由)(xCN和)(1xCN求)(1xCN的递推公式。将三角恒等式代入(2.2)式,得)(1xCN=2x)(xCN)(1xCN(2.3)从(2.2)式我们注意到,当0x1时,)(2xCN在0和1之间变化;当x1时,课程设计说明书2x1cos是虚数,所以)(xCN像双曲余弦一样单调地增加。参考(2.1),2|)(|jHC对于0p/1呈现出在1和1/(21)之间的波动;而对于p/〉1单调地减小。需要用三个参量来确定该滤波器:,p和N。在典型的设计中,用容许的通带波纹来确定,而用希望的通带截止频率来确定c。然后选择合适的阶次N,以便阻带的技术要求得到满足。定义允许的通带最大衰减p用下式表示:为了求切比雪夫滤波器在椭圆上极点的位置,我们首先要这样确定,在大圆和小圆上以等角度等间隔排列的那些点:这些点对于虚轴呈对称分布,并且没有一个点落在虚轴上;但当N为奇数时要有一个点落在实轴上,而当N为偶数时,就都不会落在实轴上。切比雪夫滤波器的极点落在椭圆上,起纵坐标由相应的大圆上点的纵坐标来表示,起横坐标由相应的小圆上点的横坐标来表示。1.1滤波器的分类(1)从功能上分;低、带、高、带阻。(2)从实现方法上分:FIR、IIR(3)从设计方法上来分:Chebyshev(切比雪夫),Butterworth(巴特沃斯)(4)从处理信号分:经典滤波器、现代滤波器1.2模拟滤波器的设计指标设()haj是一个模拟滤波器的频率响应,则基于平方幅度响应()()JHaj的低通滤波器技术指标为:2210(),sHajA(2-2-1)课程设计说明书3221()1,1pHaj(2-2-2)其中为通带波动系数,p和s是通带和阻带边缘频率。A为阻带衰减系数。这些指标如图所示。从图知必须满足2221,1()1,psHajA(2-2-3)其中参数和A是数字滤波器指标。1.3切比雪夫I型滤波器1.3.1切比雪夫低通滤波器的设计原理切比雪夫滤波器的幅频特性具有等波纹特性。它有两种形式:振幅特性在通带内是等波纹的,在阻带内是单调递减的切比雪夫I型滤波器,振幅特性在阻带内是等波纹的,在通带内是单调递减的切比雪夫II型滤波器,如图所示分别画出了滤波器的幅频特性和衰减函数。课程设计说明书4以切比雪夫I型为例介绍其设计原理幅度平方函数用2()Hj表示(2-3-1)式中,为小于1的正数,表示通带内幅度波动的程度,越大,波动幅度也越大。p称为通带截止频率。令p,称为对p的归一化频率。定义允许的通带内最大衰减p用下式表示22max()10lg,min()ppHajHaj(2-3-2)式中2max()1haj(2-3-3)221()1()NpHjC课程设计说明书5221min()1haj(2-3-4)因此210lg(1)p(2-3-5)0.12101p(2-3-6)这样,可以根据通带内最大衰减p,可求出参数。阶数N影响过渡带的宽度,同时也影响通带内波动的疏密,因为N等于通带内的最大值和最小值的总个数。设阻带的起点频率为s,则有2221()1()ssNpHjC(2-3-7)令ssp,由s1,有2111NssasCchNarchHj(2-3-8)可以解出2111assarchHjNarch(2-3-9)21111spascharchNHj(2-3-10)3dB截止频率用c表示,212acHj(2-3-11)按照(2-3-1)式,有11cpcharchN(2-3-12)经过一系列推论得归一化系统函数为课程设计说明书6(2-3-13)去归一化的系统函数为112pNpasNpNipiHsGppp(2-3-14)1.3.2切比雪夫低通滤波器的设计步骤(1)确定低通滤波器的技术指标:边带频率p,通带最大衰减p、阻带最大衰减s、阻带截至频率s,它们满足(2-3-15)(2-3-16)(2)求滤波器阶数N和参数ssp(2-3-17)0.110.11011101spK(2-3-18)11sarchkNarch(2-3-19)这样,先由(2--18)式求出11K,代入(2-3-19),求出阶数N,最后取大于或等于N的最小整数。(3)求归一化系统函数aGp1112aNNiiGppp(2-3-20)(4)将去归一化,得到实际的aHs1112aNNiiGppp2110lgppHaj2110lgssHaj课程设计说明书7paspHsGp(2-3-21)2.3.3用MATLAB设计切比雪夫低通滤波器(1),,1,szpGchebapNR该格式用于计算N阶切比雪夫I型归一化模拟低通滤波器系统的零极点和增益因子。返回长度为N的列向量Z和P,分别给出N个零点和极点的位置。Rs是阻带最小衰减。(2),1,,,NwsochebordwpwsRpAs该格式用于计算切比雪夫I型数字滤波器的阶数N和阻带截止频率wso。调用参数分别为数字滤波器的通带频率和阻带边界频率的归一化值。(3),1,,,,''NwsochebordwpwsRpAss该格式用于计算切比雪夫I型模拟滤波器的阶数N和阻带截止频率wso。wp和w

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功