1直线与圆的位置关系练习题一、填空题:1、在直角坐标系中,以点(1,2)为圆心,1为半径的圆必与y轴,与x轴2、直线m上一点P与O点的距离是3,⊙O的半径是3,则直线m与⊙O的位置关系是3、RT⊿ABC中,∠C=90°,AC=4cm,BC=3cm,则以2.4cm为半径的⊙C与直线AB的位置关系是4、如图1,AB为⊙O的直径,CD切⊙O于D,且∠A=30°,⊙O半径为2cm,则CD=5、如图2,AB切⊙O于C,点D在⊙O上,∠EDC=30°,弦EF∥AB,CF=2,则EF=6、如图3,以O为圆心的两个同心圆中,大圆半径为13cm,小圆半径为5cm,且大圆的弦AB切小圆于P,则AB=7、如图4,直线AB与CD相交于点O,∠AOC=30°,点P在射线OA上,且OP=6cm,以P为圆心,1cm为半径的⊙P以1cm/s的速度沿射线PB方向运动。则①当⊙P运动时间t(s)满足条件时,⊙P与CD相切;②当⊙P运动时间t(s)满足条件时,圆P与CD相交;③当⊙P运动时间t(s)满足条件时,⊙P与CD相离二、如图5,AB为⊙O直径,C为⊙O上的点,AD与过C点的切线互相垂直,垂足为D,求证:AC平分∠DAB三、⊿ABC中,AB=AC,以AB为直径作⊙O交BC于D,DE⊥AC于E.求证:DE为⊙O的切线2四、如图7,AB=BC,以AB为直径的⊙O交AC于D,作DE⊥BC于E。(1)求证:DE为⊙O的切线(2)作DG⊥AB交⊙O于G,垂足为F,∠A=30°.AB=8,求DG的长五、如图9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上,连接DB,且AD=DB。(1)判断DB与⊙O的位置关系,并说明理由。(2)若AD=1,PB=BO,求弦AC的长六、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。七、等腰⊿ABC中,AB=AC,点O是底边BC中点,以O为圆心的⊙O与AB边相切于点D。求证:AC与⊙O相切