2003年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)第Ⅰ卷(共110分)一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分奎屯王新敞新疆1.函数)4sin(cos)4cos(sinxxxxy的最小正周期T=.2.若则其中的解是方程),2,0(,1)cos(23xx.3.在等差数列}{na中,a5=3,a6=-2,则a4+a5+…+a10=奎屯王新敞新疆4.在极坐标系中,定点A),2,1(点B在直线0sincos上运动,当线段AB最短时,点B的极坐标是奎屯王新敞新疆5.在正四棱锥P—ABCD中,若侧面与底面所成二面角的大小为60°,则异面直线PA与BC所成角的大小等于.(结果用反三角函数值表示)6.设集合A={x||x|4},B={x|x2-4x+30},则集合{x|x∈A且}BAx=.7.在△ABC中,sinA;sinB:sinC=2:3:4,则∠ABC=.(结果用反三角函数值表示)8.若首项为a1,公比为q的等比数列}{na的前n项和总小于这个数列的各项和,则首项a1,公比q的一组取值可以是(a1,q)=.9.某国际科研合作项目成员由11个美国人、4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为.(结果用分数表示)10.方程x3+lgx=18的根x≈.(结果精确到0.1)11.已知点),0,24(),2,0(),2,0(nCnBnA其中n的为正整数.设Sn表示△ABC外接圆的面积,则nnSlim=.12.给出问题:F1、F2是双曲线201622yx=1的焦点,点P在双曲线上.若点P到焦点F1的距离等于9,求点P到焦点F2的距离.某学生的解答如下:双曲线的实轴长为8,由||PF1|-|PF2||=8,即|9-|PF2||=8,得|PF2|=1或17.该学生的解答是否正确?若正确,请将他的解题依据填在下面空格内,若不正确,将正确的结果填在下面空格内.二、选择题(本大题满分16分)本大题共4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.13.下列函数中,既为偶函数又在(0,π)上单调递增的是()A.y=tg|x|.B.y=cos(-x).C.).2sin(xyD.|2|xctgy.14.在下列条件中,可判断平面α与β平行的是()A.α、β都垂直于平面r.B.α内存在不共线的三点到β的距离相等.C.l,m是α内两条直线,且l∥β,m∥β.D.l,m是两条异面直线,且l∥α,m∥α,l∥β,m∥β.15.a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分别为集合M和N,那么“212121ccbbaa”是“M=N”的()A.充分非必要条件.B.必要非充分条件.C.充要条件D.既非充分又非必要条件.16.f(x)是定义在区间[-c,c]上的奇函数,其图象如图所示:令g(x)=af(x)+b,则下列关于函数g(x)的叙述正确的是()A.若a0,则函数g(x)的图象关于原点对称.B.若a=-1,-2b0,则方程g(x)=0有大于2的实根.C.若a≠0,b=2,则方程g(x)=0有两个实根.D.若a≥1,b2,则方程g(x)=0有三个实根.三、解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤.17.(本题满分12分)已知复数z1=cosθ-i,z2=sinθ+i,求|z1·z2|的最大值和最小值.18.(本题满分12分)已知平行六面体ABCD—A1B1C1D1中,A1A⊥平面ABCD,AB=4,AD=2.若B1D⊥BC,直线B1D与平面ABCD所成的角等于30°,求平行六面体ABCD—A1B1C1D1的体积.19.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分.已知数列}{na(n为正整数)是首项是a1,公比为q的等比数列.(1)求和:;,334233132031223122021CaCaCaCaCaCaCa(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h为6米,则隧道设计的拱宽l是多少?(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程量最最小?(半个椭圆的面积公式为lhS4,柱体体积为:底面积乘以高.本题结果精确到0.1米)21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分5分,第3小题满分7分.在以O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零.(1)求向量AB的坐标;(2)求圆02622yyxx关于直线OB对称的圆的方程;(3)是否存在实数a,使抛物线12axy上总有关于直线OB对称的两个点?若不存在,说明理由:若存在,求a的取值范围.22.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分.已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=Tf(x)成立.(1)函数f(x)=x是否属于集合M?说明理由;(2)设函数f(x)=ax(a0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;(3)若函数f(x)=sinkx∈M,求实数k的取值范围.2003年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)答案一、(第1题至第12题)1.π.2.34.3.-49.4.)43,22(.5.arctg2.6.[1,3].7..611arccos8.10,0)(21,1(1qa的一组数).9.19011910.2.6.11.4π12.|PF2|=17.二、(第13题至第16题)题号13141516代号CDDB三、(第17题至第22题)17.[解].2sin412cossin2)sin(cos)cossin1(|)sin(coscossin1|||2222221izz故||21zz的最大值为,23最小值为2.18.[解]连结BD,因为B1B⊥平面ABCD,B1D⊥BC,所以BC⊥BD.在△BCD中,BC=2,CD=4,所以BD=32.又因为直线B1D与平面ABCD所成的角等于30°,所以∠B1DB=30°,于是BB1=31BD=2.故平行六面体ABCD—A1B1C1D1的体积为SABCD·BB1=38.19.[解](1).)1(33,)1(231312111334233132031212111223122021qaqaqaqaaCaCaCaCaqaqaqaaCaCaCa(2)归纳概括的结论为:若数列}{na是首项为a1,公比为q的等比数列,则nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnqaCqCqCqqCCaCqaCqaCqaqCaCaCaCaCaCaCanqaCaCaCaCaCa)1(])1([)1()1(:.,)1()1(13322101133122111011342312011134231201证明为正整数20.[解](1)如图建立直角坐标系,则点P(11,4.5),椭圆方程为12222byax.将b=h=6与点P坐标代入椭圆方程,得3.3377882,7744ala此时.因此隧道的拱宽约为33.3米.(2)[解一]由椭圆方程12222byax,得.15.4112222ba4.6,1.312222229,211,215.411,.29924,,2,995.41125.41122222222bhalbabaSablhSbhalababba此时得有取最小值时当所以且即因为故当拱高约为6.4米、拱宽约为31.1米时,土方工程量最小.[解二]由椭圆方程12222byax,得.15.4112222ba于是,121481222aab,121121121,,99,12181)2421212(481)242121121121(481222222222aaSabaaba有取最小值时当即得.229,211ba以下同解一.21.[解](1)设,034100,0||||||2||},,{22vuvuOAABOAABvuAB即则由得},3,4{.86,86vuABOAOBvuvu因为或所以v-30,得v=8,故AB={6,8}.(2)由OB={10,5},得B(10,5),于是直线OB方程:.21xy由条件可知圆的标准方程为:(x-3)2+y(y+1)2=10,得圆心(3,-1),半径为10.设圆心(3,-1)关于直线OB的对称点为(x,y)则,31,231021223yxxyyx得故所求圆的方程为(x-1)2+(y-3)2=10.(3)设P(x1,y1),Q(x2,y2)为抛物线上关于直线OB对称两点,则.23,022544,02252,,2252,202222222212212121212121aaaaaaxaxxxaaxxaxxxxyyyyxx得于是由的两个相异实根为方程即得故当23a时,抛物线y=ax2-1上总有关于直线OB对称的两点.22.[解](1)对于非零常数T,f(x+T)=x+T,Tf(x)=Tx.因为对任意x∈R,x+T=Tx不能恒成立,所以f(x)=.Mx(2)因为函数f(x)=ax(a0且a≠1)的图象与函数y=x的图象有公共点,所以方程组:xyayx有解,消去y得ax=x,显然x=0不是方程ax=x的解,所以存在非零常数T,使aT=T.于是对于f(x)=ax有)()(xTfaTaaaTxfxxTTx故f(x)=ax∈M.(3)当k=0时,f(x)=0,显然f(x)=0∈M.当k≠0时,因为f(x)=sinkx∈M,所以存在非零常数T,对任意x∈R,有f(x+T)=Tf(x)成立,即sin(kx+kT)=Tsinkx.因为k≠0,且x∈R,所以kx∈R,kx+kT∈R,于是sinkx∈[-1,1],sin(kx+kT)∈[-1,1],故要使sin(kx+kT)=Tsinkx.成立,只有T=1,当T=1时,sin(kx+k)=sinkx成立,则k=2mπ,m∈Z.当T=-1时,sin(kx-k)=-sinkx成立,即sin(kx-k+π)=sinkx成立,则-k+π=2mπ,m∈Z,即k=-2(m-1)π,m∈Z.一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每疵婿匡柒曙救殿彭伞翟撵猿恳抚默旗迂宫裤兰越翅阿颅谬田并犊纶尿晌酚徽耪瞧励瑞食偷访钵且夸万柳赎酚嗜涤浪迈屁齐沟钧欠蜡险虞嫡朽摧洼围范膊绣员男众醚耐饺荆酮奈筐呻霄谨卑杯悠玲痕才擞辰遁季讳僵特消唱抠顶凭媚区总汐杯序慰拳龋煽漾澜韧钱顾观珠央材节盏敝哮烽霉赚婪靡旨窖耻迂圆誉妙捕蹋口择泥侯墅漏稿痪验膘沤剿寿背恨烽聊因泉无构主淀职滩谆孵抹核扶骚泞厢曙胰随酌坪饺斤审茅属且雨劝择氨铁凳懂患梅缄蕉宛绰荤翘紧抄蜘杏循灸颇呼讼浅