高中数学必修二导学练(修改版含答案)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

11.1.1棱柱、棱锥、棱台的结构特征一、学习目标:1、知识与技能:(1)能根据几何结构特征对空间物体进行分类。(2)会用语言概述棱柱、棱锥、棱台的结构特征。(3)会表示有关几何体以及柱、锥、台的分类。2、过程与方法:(1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。(2)观察、讨论、归纳、概括所学的知识。3、情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象概括能力。二、学习重点、难点:学习重点:感受大量空间实物及模型,概括出柱、锥、台的结构特征。学习难点:柱、锥、台的结构特征的概括。三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。3、A类是自主探究,B类是合作交流。四、知识链接:平行四边形:矩形:正方体:五、学习过程:A问题1:什么是多面体、多面体的面、棱、顶点?A问题2:什么是旋转体、旋转体的轴?B问题3:什么是棱柱、锥、台?有何特征?如何表示?如何分类?C问题4;探究一下各种四棱柱之间有何关系?C问题5:质疑答辩,排难解惑1.有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱?(举反例说明)22.棱柱的任何两个平面都可以作为棱柱的底面吗?A例1:如图,截面BCEF把长方体分割成两部分,这两部分是否是棱柱?B例2:一个三棱柱可以分成几个三棱锥?六、达标测试A1、下面没有对角线的一种几何体是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱A2、若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A.正方体B.正四棱锥C.长方体D.直平行六面体B3、棱长都是1的三棱锥的表面积为()A.3B.23C.33D.43B4、正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为()A.279cm2B.79cm2C.323cm2D.32cm2B5、若长方体的三个不同的面的面积分别为2,4,8,则它的体积为()A.2B.4C.8D.12C6、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.必须都是直角三角形B.至多只能有一个直角三角形C.至多只能有两个直角三角形D.可能都是直角三角形A7、长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_______________.七、小结与反思:【励志良言】不为失败找理由,只为成功找方法。ABCDA1B1C1D1EF31.1.2圆柱、锥、台、球、组合体的结构特征一、学习目标:1、知识与技能:能根据几何结构特征对空间物体进行分类。会用语言概述圆柱、锥、台、组合体的结构特征。会表示圆柱、锥、台的分类。2、过程与方法:通过直观感受空间物体,概括出柱、锥、台的几何结构特征。观察、讨论、归纳、概括所学的知识。3、情感态度与价值观:感受空间几何体存在于现实生活周围,增强学习的积极性,同时提高观察能力。培养空间想象能力和抽象概括能力。二、学习重点、难点:学习重点:感受大量空间实物及模型、概括出圆柱、锥、台的结构特征。学习难点:圆柱、锥、台的结构特征的概括。三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。3、A类是自主探究,B类是合作交流。四、知识链接:棱柱:棱锥:棱台:五、学习过程:A问题1:观察下列图形探究各自的特点及共同点A问题2:什么是圆柱、锥、台?有何特征?如何表示?A问题3:什么是球?有何特征?如何表示?A问题4:什么叫简单组合体?简单组合体构成的两种基本形式是一:;二:。A例1:底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?A4BA例2:已知球的半径为10cm,一个截面圆的面积是36cm2,则球心到截面圆圆心的距离是.六、达标测试A1、图(1)是由哪个平面图形旋转得到的()ABCDA2、下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心A3、下列说法正确的个数为()①经过圆柱任意两条母线的截面是一个矩形②连接圆柱上、下底面圆周上的两点的线段是圆柱的母线③圆柱的任意两条母线互相平行A.0B.1C.2D.3A4、下列几何体的轴截面一定是圆面的是()A.圆柱B.圆锥C.球D.圆台B5、如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B.2:3C.4:9D.2:9B6、A、B为球面上不同两点,则通过A、B所有大圆的个数()A.1个B.无数个C.一个也没有D.1个或无数个B7、球的半径扩大为原来的2倍,它的体积扩大为原来的_________倍.七、小结与反思:【励志良言】“三心二意”另解:信心、恒心、决心;创意、乐意。1.2.1空间几何体的三视图5一、学习目标:知识与技能:(1)掌握画三视图的基本技能;(2)丰富空间想象力过程与方法:主要通过亲身实践,动手作图,体会三视图的作用情感态度与价值观:(1)提高空间想象力(2)体会三视图的作用二、学习重点、难点:学习重点:画出简单组合体的三视图学习难点:识别三视图所表示的空间几何体三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。3、A类是自主探究,B类是合作交流。四、知识链接:圆柱:圆锥:圆台:五、学习过程:A问题1:什么是投影、投影线、投影面?投射线可自一点发出,也可是一束与投影面成一定角度的平行线,这样就使投影法分为中心投影和平行投影A问题2:什么是中心投影、平行投影?物体上某一点与其投影面上的投影点的连线是平行的,则为平行投影,如果聚于一点,则为中心投影.A问题3.(1).光线叫做几何体的正视图.(2).光线叫做几何体侧视图.(3).光线叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图。A例1.根据长方体的模型,请您画出它们的三视图,并观察三种图形之间的关系.三视图的画法规则:、、。6A例2.请您画出圆柱、圆锥、圆台、球的三视图六、达标测试A1、两条相交直线的平行投影是()A.两条相交直线B.一条直线C.两条平行线D.两条相交直线或一条直线A2、如果一个几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个圆及其圆心,那么这个几何体为()A.棱柱B.棱锥C.圆锥D.圆柱B3、课本15页1.、2、3、4题七、小结与反思:【励志良言】当你感到悲哀痛苦时,最好是去学些什么东西。学习会使你永远立于不败之地。7高一数学必修2导学案主备人:备课时间:备课组长:1.2.2空间几何体的直观图一、学习目标:知识与技能:(1)掌握斜二测画法画水平设置的平面图形的直观图。(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。过程与方法:通过观察和类比,利用斜二测画法画出空间几何体的直观图。情感态度与价值观:(1)提高空间想象力与直观感受。(2)体会对比在学习中的作用。(3)感受几何作图在生产活动中的应用。二、学习重点、难点:学习重点:用斜二测画法画空间几何体的直观图。学习难点:用斜二测画法画空间几何体的直观图。三、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。3、A类是自主探究,B类是合作交流。四、知识链接:正视图:侧视图:俯视图:五、学习过程:A例1.用斜二测画法画水平放置的正六边形的直观图。画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。B例2.用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体1111ABCDABCD的直观图。8B例3.课本P18图1.2-13,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。六、达标测试A1、利用斜二测画法得到的下列结论正确的是()①三角形的直观图是三角形②平行四边形的直观图是平行四边形③正方形的直观图是正方形④菱形的直观图是菱形A.①②B.①C.③④D.①②③④B2、已知正三角形ABC的边长为a,那么它的平面直观图的面积为七、小结与反思:【励志良言】生命之灯因热情而点燃,生命之舟因拼搏而前行。9高一数学必修2导学案主备人:备课时间:备课组长:空间几何体结构周测试一、选择题:(50分)1、在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2、下列说法错误的是()A:由两个棱锥可以拼成一个新的棱锥B:由两个棱台可以拼成一个新的棱台C:由两个圆锥可以拼成一个新的圆锥D:由两个圆台可以拼成一个新的圆台3、下列说法正确的是()A:以直角三角形的一边为轴旋转而成几何体是圆锥B:圆柱、圆锥、圆台的底面都是圆面C:以直角梯形的一腰为轴旋转成的是圆台D:圆锥的侧面展开图为扇形,这个扇形所在的圆的半径等于圆锥底面圆的半径4、下列关于长方体的叙述不正确的是()A:长方体的表面共有24个直角B:长方体中相对的面都互相平行C:长方体中某一底面上的高的长度就是两平行底面间的距离:D;两底面间的棱互相平行且相等的六面体是长方体5、将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()6、如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6B.6、4、5C.5、4、6D.5、6、47、如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1Bl=1,AB=2,BlCl=1.5,BC=3,A1C1=2,AC=3C.AlBl=1,AB=2,B1Cl=1.5,BC=3,AlCl=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A1108、有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的;其中正确的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)9、下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面是全等的等腰三角形10、图1是由图2中的哪个平面图旋转而得到的()二、填空题(20分)11、如图,长方体ABCD—A1BlClD1中,AD=3,AAl=4,AB=5,则从A点沿表面到Cl的最短距离为______.12、在三棱锥S—ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为_____.13、高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是______.1114如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是____.(注:把你认为正确的命题的序号都填上)三、解答题(30分)15、(15分)长方体的全面积是11,十二条棱长度之和为24,求这个长方体的一条对角线长?16、(15分)一个圆锥的底面半径为2cm,高为6cm,在其

1 / 119
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功