八年级上册12.2.3三角形全等的判定(第3课时ASA与AAS)三个条件判断三角形全等1.三个角2.三条边3.两边一角4.两角一边不能判断三角形全等能判断三角形全等SAS能判断三角形全等,但是SSA不能ASA与AAS都能判断三角形全等1.边边边公理内容:_____________________________________。_____________________________三边对应相等的两个三角形全等简称“边边边”或“SSS”2.边角边公理内容:__________________________________________________________有两边和它们的夹角对应相等的两个三角形全等简称“边角边”或“SAS”ABCABC如果已知一个三角形的两角及一边,那么有几种可能的情况呢?答:角边角(ASA)角角边(AAS)先任意画出一个△ABC,再画一个△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B(即使两角和它们的夹边对应相等)。把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?BAC画法:1、画A/B/=AB;2、在A/B/的同旁画∠DA/B/=∠A,∠EB/A/=∠B,A/D,B/E交于点C/。通过实验你发现了什么规律?ACBA’B’C’ED已知:任意△ABC,画一个△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B:△A/B/C/就是所要画的三角形。CDA'ABE∠A=∠A’(已知)AB=A’C(已知)∠B=∠C(已知)在△ABE和△A’CD中∴△ABE≌△A’CD(ASA)用数学符号表示:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。探究4反映的规律是:P40例3已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C求证:AD=AE.BAECDO证明:在△ADC和△AEB中∠A=∠AAC=AB∠C=∠B(公共角)(已知)(已知)∴△ADC≌△AEB(ASA)∴AD=AE又∵AB=AC∴BD=CE(全等三角形的对应边相等)(已知)(等式性质1)BD=CE吗?例:已知如图,O是AB的中点,A=∠B,ABCDO12∵O是AB的中点∴OA=OB求证:△AOC≌△BOD在△AOC和△BOD中证明:∠A=∠BOA=OB∠1=∠2(已知)(已证)∴△AOC≌△BOD(ASA)小明不小心打破了一块三角形的玻璃,看到以下三个碎片,他应该拿哪个碎片去商场买才能买回一个与原来一摸一样的三角形碎片?①②③应拿③去利用“角边角”可知,带第③块去,可以配到一个与原来全等的三角形玻璃。P41练习22.如图,要测量河两岸相对的两点A,B的距离,可以在AB的垂线BF上取两点C,D,使BC=CD,再定出BF的垂线DE,使A,C,E在一条直线上,这时测得DE的长就是AB的长。为什么?ABCDEF在△ABC和△EDC中,∠B=∠EDC=900BC=DC,∠1=∠2,∴△ABC≌△DEF(ASA)∴AB=ED.12证明:如下图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?EFDBAC在△ABC和△DEF中,∠A+∠B+∠C=1800,∠D+∠E+∠F=1800,∵∠A=∠D,∠B=∠E,∴∠C=∠F,∴∠B=∠E,BC=EF,∠C=∠F,∴△ABC≌△DEF(ASA)CDA'ABEAE=A’D(已知)∠A=∠A’(已知)∠B=∠C(已知)在△ABE和△A’CD中∴△ABE≌△A’CD(AAS)用数学符号表示:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。例4反映的规律是:跟踪练习:已知如图,∠1=∠2,∠C=∠D求证:AD=AC.1ABDC2证明:在△ABD和△ABC中∠1=∠2∠D=∠CAB=AB∴△ABD≌△ABC(AAS)∴AD=AC变式1:已知如图,∠1=∠2,∠ABD=∠ABC求证:AD=AC.1ABDC2证明:在△ABD和△ABC中∠1=∠2AB=AB∠ABD=∠ABC∴△ABD≌△ABC(ASA)∴AD=AC变式2:课本P43--44已知如图,∠1=∠2,∠3=∠4求证:AD=AC.1ABDC234证明:∵∠3=∠4∴∠ABD=∠ABC在△ABD和△ABC中∠1=∠2AB=AB∠ABD=∠ABC∴△ABD≌△ABC(ASA)∴AD=AC为什么?等角的补角相等1.如图,AB⊥BC,AD⊥DC,∠1=∠2.求证:AB=AD.课本P41练习1在△ABC和△ADC中,∠B=∠D,∠1=∠2,AC=AC,∴△ABC≌△ADC(AAS)∴AB=AD.证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=900,到目前为止,我们一共探索出判定三角形全等的四种规律,它们分别是:1、边边边(SSS)3、角边角(ASA)4、角角边(AAS)2、边角边(SAS)∴△ABC≌△DCB()练一练:1、完成下列推理过程:在△ABC和△DCB中,∠ABC=∠DCB∵BC=CBASAABCDO1234()公共边∠2=∠1AAS∠3=∠4∠2=∠1BC=CB2、请在下列空格中填上适当的条件,使△ABC≌△DEF。在△ABC和△DEF中∵∴△ABC≌△DEF()ABCDEFSSSAB=DEBC=EFAC=DFASA∠A=∠DAB=DE∠B=∠DEFAC=DF∠ACB=∠FAAS∠B=∠DEFBC=EF∠ACB=∠FBC=EF两个三角形中相等的边或角(全等画“√”,不全等画“×”公理或推论(简写)三条边两边一角两边夹角两边与一边对角SSA两角一边两角夹边两角与一角对边三个角AAA×√√√√×SSSSASASAAAS练习:==ABECFD已知:如图∠B=∠DEF,BC=EF,求证:ΔABC≌ΔDEF(1)若要以“SAS”为依据,还缺条件______;(2)若要以“ASA”为依据,还缺条件______;(3)若要以“SSS”为依据,还缺条件______;∠ACB=∠FAB=DEAB=DE、AC=DF三步走:①要证什么;②已有什么;③还缺什么。(4)若要以“AAS”为依据,还缺条件______;∠A=∠D例:如图,O是AB的中点,∠C=∠D,△AOC与△BOD全等吗?为什么?OABCDBOAOBODAOCBODAOCDD\BODAOCDD和(已知)(中点的定义)(对顶角相等)解:在中∠C=∠D(AAS)∵O是AB的中点∴AO=BO课堂练习练习如图,E,F在线段AC上,AD∥CB,AE=CF.若∠B=∠D,求证:DF=BE.ABCDEF证明:∵AD∥CB,∴∠A=∠C.∵AE=CF,∴AE-EF=CF-EF即:AF=CE.在△ADF和△CBE中,∠D=∠B,∠A=∠C,AF=CE,∴△ADF≌△CBE(AAS).∴DF=BE.(1)两角和它们的夹边对应相等的两个三角形全等.简写成“角边角”或“ASA”.(2)两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.知识要点:(3)探索三角形全等是证明线段相等(对应边相等),角相等(对应角相等)等问题的基本途径。课堂小结布置作业P43--45习题第4、5、11、12题.