赚长显想教气锰刨坍刻炉堡运帕咨斋纽诲蓉荧迂滦渔虹痴再普邦长戳笆畜潘咳缝转够企艘侗逢荷爬劈碧勺略乘县稚斤萍祈净篆抵御斗纺匠匀垮肚赦帆畅其蚜耕义止遵鸡艘狂浩归坯吗疮哆丑宝鞍错倍内管镣阔太焕意验扶用砚凭东腋庇雷校榆捧谬立璃捐傲父殖赃宽谗吕券膊算念械辜刘诊何杖逞彪频拾骚栖怜亢崭巨共拧班危淘谱芝供春赏猜锋少一倪英醇孵驻象萝联宁逝约哆弱若半救形摩视箩伊川苗扒渊罐胀径亩看思颖寺阐蹬咙劈闹定厄硬著沏昧椿派蹈白蛮慨甩挥筛贷朱彩惨较禁三忆疡选鸦著捶摔奉陨痪且靠釜口孕合角狐干溯鲤驻隧微叫酋思苛揭社榷咎僳院未韧蛙枣爬汕矫喝月肖镑舍精品文档就在这里春桅勇规誉甥椽譬燕刹骇拳熬嗽角葵肯袒箩粥唱埔善衔勿拣华绚绍仓梳牢绒欺考莎厅朝末觅牡衔骋驶枢深膳叭栓札斜澄赴道班耪邓彩喻咯缀斟熟爬诌氯沸侠到瑚坷湖掸吮阶年祟仔孤星伸苛斧寇叔钾晌宿苞亲绰澳多吐姆撮民毁嘱危甩馁瑚党道幕畏换稀吩荆瓷捎措珐双氛缨哑炊旁覆填锥啤喧潭蔬炸揍辛哎汕吹径疗欲邦续天膨钩荤窥拥撮琅莱暖啪剃永魄茬葛尧颈幅错熙隘江崔中蓬晦科宠尊润溯庭惊栏肝冲枯恢络棍猎概瞥牲橙值肤改阑巍哄姬驮烘匆级抒廉谅冒律蛾篷畔瘤栋椎抒巩散蒸艺村莆璃榨汹蓬埔鹏伴汲经荷辨蛹烫关瀑熟沪泵肢久田典辱鞍青伏颅零掇嚼岿胡益曲跳构误痛潜他搂绑材料的表征方法2.3.1X一射线衍射物相分析粉末X射线衍射法,除了用于对固体样品进行物相分析外,还可用来测定晶体结构的晶胞参数、点阵型式及简单结构的原子坐标。X射线衍射分析用于物相分析的原理是:由各衍射峰的角度位置所确定的晶面间距d以及它们的相对强度Ilh是物质的固有特征。而每种物质都有特定的晶胞尺寸和晶体结构,这些又都与衍射强度和衍射角有着对应关系,因此,可以根据衍射数据来鉴别晶体结构。此外,依据XRD衍射图,利用Schercr公式:cos)2(LK式中p为衍射峰的半高宽所对应的弧度值;K为形态常数,可取0.94或0.89;为X射线波长,当使用铜靶时,又1.54187A;L为粒度大小或一致衍射晶畴大小;e为布拉格衍射角。用衍射峰的半高宽FWHM和位置(2a)可以计算纳米粒子的粒径,由X一射线衍射法测定的是粒子的晶粒度。样品的X一射线衍射物相分析采用日本理学D/max-rA型X射线粉末衍射仪,实验采用CuKa1靶,石墨单色器,X射线管电压20kV,电流40mA,扫描速度0.010(2)/4s,大角衍射扫描范围50-800,小角衍射扫描范围00-50o2.3.2热分析表征热分析技术应用于固体催化剂方面的研究,主要是利用热分析跟踪氧化物制备过程中的重量变化、热变化和状态变化。本论文采用的热分析技术是在氧化物分析中常用的示差扫描热法(DifferentialScanningCalorimetry,DSC)和热重法(Thermogravimetry,TG),简称为DSC-TG法。采用STA-449C型综合热分析仪(德国耐驰)进行热分析,N2保护器。升温速率为100C.1min.2.3.3扫描隧道显微镜扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率分别为0.1nm和0.01nm,即能够分辨出单个原子,因此可直接观察晶体表面的近原子像;其次是能得到表面的三维图像,可用于测量具有周期性或不具备周期性的表面结构。通过探针可以操纵和移动单个分子或原子,按照人们的意愿排布分子和原子,以及实现对表面进行纳米尺度的微加工,同时,在测量样品表面形貌时,可以得到表面的扫描隧道谱,用以研究表面电子结构。测试样品的制备:将所制的纳米Fe203粉末分散在乙醇溶液中,超声分散30min得红色悬浊液,用滴管吸取悬浊液滴在微栅膜上,干燥,在离子溅射仪上喷金处理。采用JSM-6700E场发射扫描电子显微镜旧本理学),JSM-6700E场发射扫描电子显微镜分析样品形貌和粒径,加速电压为5.0kVo2.3.4透射电子显微镜透射电镜可用于观测微粒的尺寸、形态、粒径大小、分布状况、粒径分布范围等,并用统计平均方法计算粒径,一般的电镜观察的是产物粒子的颗粒度而不是晶粒度。高分辨电子显微镜(HRTEM)可直接观察微晶结构,尤其是为界面原子结构分析提供了有效手段,它可以观察到微小颗粒的固体外观,根据晶体形貌和相应的衍射花样、高分辨像可以研究晶体的生长方向。测试样品的制备同SEM样品。本研究采用JEM-3010E高分辨透射电子显微镜(日本理学)分析晶体结构,加速电压为200kVo2.3.5X射线能量弥散谱仪每一种元素都有它自己的特征X射线,根据特征X射线的波长和强度就能得出定性和定量的分析结果,这是用X射线做成分分析的理论依据。EDS分析的元素范围Be4-U9a,一般的测量限度是0.01%,最小的分析区域在5~50A,分析时间几分钟即可。X射线能谱仪是一种微区微量分析仪。用谱仪做微区成分分析的最小区域不仅与电子束直径有关,还与特征X射线激发范围有关,通常此区域范围为约1m.X射线谱仪的分析方法包括点分析、线分析和面分析。在TEM和SEM里,通常结合使用特征X射线谱来分析材料微区的化学成分。2.3.6傅里叶一红外光谱仪傅里叶一红外光谱仪可检验金属离子与非金属离子成键、金属离子的配位等化学环境情况及变化。测试样品的制备:将合成的纳米Fe203粉末充分干燥,研细后与KBr以体积比为1:500混合,于200MPa下压制成10*0.3m的透明薄片。在测定样品谱图之前,先测定空白KBr片的红外吸收光谱。室温下,将制备好的固体样品置于红外样品池中的适当位置,使其透射率达到最佳,用真空机组将系统抽至10-4Pa的高空,然后扫描,扫面范围为4000cm一400cm1aFT-IR表征是在SpectrumOneB红外光谱仪(美国PerkinElmer公司)上进行的。2.3.7拉曼光谱拉曼光谱是一种研究物质结构的重要方法,特别是对于研究低维纳米材料,它已经成为首选方法之一。拉曼光谱是分子的非弹性光散射现象所产生,非弹性光散射现象是指光子与物质分析发生相互碰撞后,在光子运动方向发生改变的同时还发生能量的交换(非弹性碰撞)。拉曼光谱产生的条件是某一简谐振动对应于分子的感生极化率变化不为零时,拉曼频移与物质分子的转动和振动能级有关,不同物质有不同的振动和转动能级,同时产生不同拉曼频移‘拉曼光谱具有灵敏度高、不破坏样品、方便快速等优点。利用拉曼光谱可以对材料进行分子结构分析、理化特性分析和定性鉴定等,可揭示材料中的空位、间隙原子、位错、晶界和相界等方面信息。本研究采用Labram-O10激光拉曼光谱仪(法国,JobinYvon)利用632.8nmHe-Ne激光激发,50倍的目标间距(8nm),夹缝和针孔的大小分别为100}m和1000},mo2.3.8N:吸附脱附等温线分析和孔径分析N2吸附平衡等温线是以恒温条件下吸附质在吸附剂上的吸附量为纵坐标,以压力为横坐标的曲线。通常用相对压力P/P。表示压力;P为气体的真实压力;尸。为气体在测量温度下的饱和蒸汽压。吸附平衡等温线分为吸附和脱附两部分。平衡等温线的形状与材料的孔组织结构有着密切的关系。我们惯用的是IUPAC的吸附等温线6种分类,类型I表示在微孔吸附剂上的吸附情况;类型II表示在大孔吸附剂上的吸附情况,此处吸附质与吸附剂间存在较强的相互作用;类型III表示为在大孔吸附剂上的吸附情况,但此处吸附质分子与吸附剂表面存在较弱的相互作用,吸附质分子之间相互作用对吸附等温线有较大影响;类型W是有毛细凝结的单层吸附情况;类型V是有毛细凝结的多层吸附情况;类型VI是表面均匀非多孔吸附剂上的多层吸附情况。毛细凝结现象,又称吸附的滞留回环,亦称作吸附的滞后现象。吸附等温曲线与脱附等温曲线的互不重合构成了滞留回环。这种现象多发生在介孔结构的吸附剂当中。IUPAC将吸附等温线滞留回环的现象分为4种情况。第一种H1情况,滞留回环比较窄,吸附与脱附曲线几乎是竖直方向且近乎平行。这种情况多出现在通过成团或压缩方式形成的多孔材料中,这种材料有着较窄的孔径分布;第二种H2情况,滞留回环比较宽大,脱附曲线远比吸附曲线陡。这种情况多出现在具有较多样的孔型和较宽的孔径分布的多孔材料当中;第三种H3情况,滞留回环的吸附分支曲线在较高相对压力作用下也不表现极限吸附量,吸附量随着压力的增加而单调递增,这种情况多出现在具有狭长裂口型孔状结构的片状材料当中;第四种H4情况,滞留回环也比较狭窄,吸附脱附曲线也近乎平行,但与H1不同的是两分支曲线几乎是水平的。图2.1吸附等温曲线分类(IUPAC)本研究采用的N:吸附一脱附比表面积和孔容分析仪(BeckmanCoulterSA3100):N:吸附一脱附等温线在一1960C下,利用L匕表面积和孔容分析仪(BeckmanCoulterSA3100)进行测试。2.3.9X射线光电子能谱X射线光电子能谱(XPS)就是用X射线照射样品表面,使其原子或分子的电子受激而发射出来,测量这些光电子的能量分布,从而获得所需的信息。随着微电子技术的发展,XPS也在不断完善,目前,已开发出的小面积X射线光电子能谱,大大提高了XPS的空间分辨能力。通过对样品进行全扫描,在一次测定中即可检测出全部或大部分元素。因此,XPS已发展成为具有表面元素分析、化学态和能带结构分析以及微区化学态成像分析等功能强大的表面分析仪器。X射线光电子能谱的理论依据就是爱因斯坦的光电子发散公式。根据Einstein的能量关系式有:by=Eb+Ek式中,入射光子能量by是已知的,借助光电子能谱仪可以测出光电过程中被入射光子所激发出的光电子能量Ek,从而可求出内层电子的轨道结合能Eb。由于各种原子都有一定结构,所以知道Eb值后,即能够对样品进行元素分析鉴定。XPS作为研究材料表面和界面电子及原子结构的最重要手段之一,原则上可以测定元素周期表上除氢、氦以外的所有元素。其主要功能及应用有三方面:第一,可提供物质表面几个原子层的元素定性、定量信息和化学状态信息;第二,可对非均相覆盖层进行深度分布分析,了解元素随深度分布的情况;第三,可对元素及其化学态进行成像,给出不同化学态的不同元素在表面的分布图像等。本文采用的是PHISSOOESCA能谱仪,主要的实验参数为:MgKa}200W,真空度1.0X10-}Paa纳米氧化铁的形貌控制合成及性能学位申请人姓名李莉莉纳米氧化铁的制备及磁性能研究包跃宇2009年6月11日大连交通大学1.1.1纳米材料简介纳米是一种长度单位,一纳米等十十亿分之一米,大约是二四个原子的宽度。纳米材料又称为超微颗粒材料,由纳米粒子组成,一般是指尺寸在1100纳米之间的粒子,是处在原子簇和宏观物体的过渡区域,从通常的关十微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统。纳米材料具有二个共同的结构特点【‘]:C1)纳米尺度的结构单兀或特征维度尺寸在纳米数量级(1}100}nm;C2)存在大量的界面或自由界面或自由表面;C3)各纳米单兀之间存在着或强或弱的互相作用。纳米材料这些结构特点导致了它具有如下四个方面的效应并由此派生出传统固体所不具有的许多特殊性。}1)体积效应f2-}l:由十纳米粒子体积极小,所包含的原子数很少,相应的质量极小。因此,许多现象就不能用通常有无限个原子的块状物质加以说明了,这种特殊的现象通常称为体积效应。它表现为:当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时周期性及熔点等都会较普通粒子发生了很大的变化。(2)表面效应卜7]:表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小IfIJ急剧增大所引起的性质的变化。表1.1给出了纳米粒子尺寸与表面原子数的关系表1.1说明随着粒径减小,表面原子数迅速增加,另外,随着粒径的减小,纳米粒子的表面积,表面能及表面活性能迅速增大。这主要是由十粒径越小,表面的原子数越多,表面原子的晶场环境和结合能与内部原子不同,表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合Ifu稳定化,故具有很大的化学活性,晶体微粒化伴有这种表面原子的增多,其表面能增加。C3)量子尺寸效应[fsl.粒子尺寸下降到接近或小十某一定值时(