A Random-Walk or Color-Chaos on the Stock Market-

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1ARandom-WalkorColor-ChaosontheStockMarket?-Time-FrequencyAnalysisofS&PIndexesPingChenIlyaPrigogineCenterforStudiesinStatisticalMechanics&ComplexSystemsTheUniversityofTexas,Austin,Texas78712E-Mail:pchen@physics.utexas.eduStudiesinNonlinearDynamics&Econometrics,1(2),87-103(1996)JELNumericalClassification:130(fluctuations),211(econometrics).JELClassificationSystemforJournalArticles:C14(nonparametricmethods),C22(time-seriesmodels,methods),C50(generaleconometricmodeling),E32(businessfluctuations:cycles).AbstractTherandom-walk(white-noise)modelandtheharmonicmodelaretwopolarmodelsinlinearsystems.Amodelinbetweeniscolorchaoswhichgeneratesirregularoscillationswithanarrowfrequency(color)band.Time-frequencyanalysisisintroducedforevolutionarytimeseriesanalysis.Thedeterministiccomponentfromnoisydatacanberecoveredbyatime-variantfilterinGaborspace.ThecharacteristicfrequencyiscalculatedfromtheWignerdecomposeddistributionseries.ItisfoundthataboutseventypercentoffluctuationsinStandard&Poorstockpriceindexes,suchastheFSPCOMandFSDXPmonthlyseries,detrendedbytheHodrick-Prescott(HP)filter,canbeexplainedbydeterministiccolorchaos.Thecharacteristicperiodofpersistentcyclesisaroundthreetofouryears.Theircorrelationdimensionisabout2.5.Theexistenceofpersistentchaoticcyclesrevealsnewperspectiveofmarketresilienceandnewsourcesofeconomicuncertainties.Thenonlinearpatterninthestockmarketmaynotbewipedoutbymarketcompetitionundernonequilibriumsituationswithtrendevolutionandfrequencyshifts.Thecolor-chaosmodelofstock-marketmovementsmayestablishalinkbetweenbusiness-cycletheoryandasset-pricingtheory.I.Introduction2Financetheoryinequilibriumeconomicsisbasedontherandom-walkmodelofstockprices.However,thereisamoregeneralscenario:amixedprocesswithrandomnoiseanddeterministicpattern,includingapossibilityofdeterministicchaos.Chaosiswidelyfoundinthefieldsofphysics,chemistry,andbiology.Buttheexistenceofeconomicchaosisstillanopenissue[BarnettandChen1988,BrockandSayers1989,Ramsey,Sayers,andRothman1990,DeCosterandMitchell1991,1994,Barnettet.al.1995].Trends,noise,andtimeevolutioncausedbystructuralchangesarethemaindifficultiesineconomictimeseriesanalysis.Amoregeneralizedspectralanalysisisneededfortestingeconomicchaos[Chen1988,1993].Measurementcannotbeseparatedfromtheory.Therearetwopolarmodelsinlineardynamics:whitenoiseandharmoniccycle.Correlationanalysisandspectralanalysisarecomplementarytoolsinthestationarytime-seriesanalysis.Whitenoisehasazerocorrelationandaflatspectrumwhileaharmoniccyclehasaninfinitecorrelationandasharpspectrumwithzero-width.Obviously,realdatafallbetweenthesetwoextremes.Amajorchallengeineconomictimeseriesanalysisishowtodealwithtimeevolution.Econometricmodels,suchastheARCHandGARCHmodelswithachangingmeanandvarianceareparametricmodelsinthenonstationarystochasticapproach[Engle1982,Bollerslev1986].Ageneralizedspectralapproachismoreusefulinstudiesofdeterministicchaos[Chen1993].Itisknownthatastationarystochasticprocessdoesnothaveastationaryorcontinuousinstantaneousfrequencyintime-frequencyrepresentation.Therefore,wedonotusethetermsstationaryandnonstationarywhicharefamiliarinastochasticapproach.Anewrepresentationwillintroducesomeconceptualchanges.Therearemanyfundamentaldifferencesbetweenanonlineardeterministicapproachandalinearstochasticapproachincludingtimescales,observationreferences,andtestingphilosophy.Fromtheviewoftheoreticalstudies,thediscrete-timewhitechaosgeneratedbynonlineardifferenceequationsistractableinanalyticmathematicsandcompatiblewiththeoptimizationrationality[DayandBenhabib1980,Benhabib1990].Fromtheneedsofempiricalanalysis,thecontinuous-timecolorchaosgeneratedbynonlineardifferentialequationsismorecapableofdescribingbusinesscyclesthanwhitechaos,becausetheirerraticfluctuationsandrecurrentpatterncanbecharacterizedbynonlinearoscillationswithirregularamplitudeandanarrowfrequency(color)bandinspectrum[Chen1988,1993;Zarnowitz1993].Weintroducethetime-frequencyrepresentationasanon-parametricapproachofgeneralizedspectralanalysisfortheevolutionarytimeseries[QianandChen1996].TheWignerdistributioninquantummechanicsandtheGaborrepresentationincommunicationtheorywerepioneeredbytwoNobellaureatephysicists[Wigner1933,Gabor1948].Appliedscientistsinsignalprocessinghavemadefundamentalprogressindevelopingefficientalgorithmsoftime-frequencydistributionseries[QianandChen1994a,b,1996].Thesearepowerfultoolsinourstudiesofeconomicchaos[Chen1994,1995,1996].Indealingwithproblemsofgrowingtrendsandstrongnoise,weapplytheHodrick-Prescott(HP)filterfortrend-cycledecomposition[HodrickandPrescott1981]andtime-variantfiltersin3Gaborspaceforpatternrecognition[QianandChen1996,Sunet.al.1996].Wegotclearsignalsoflow-dimensionalcolorchaosfromStandard&Poorstockmarketindicators.Thechaossignalscanexplainabout70percentofstockvariancesfromdetrendedcycles.Itscharacteristicperiodisaroundthreetofouryears.Theircorrelationdimensionisabout2.5.Thetimepathsoftheircharacteristicperiodisusefulinanalyzingcauseandeffectfromhistoricalevents.Clearly,thecolor-chaosmodeldescribesmorefeaturesofmarketmoveme

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功