第三章不定积分本章主要知识点:不定积分的意义,基本公式不定积分的三种基本方法杂例一、不定积分的意义、基本公式不定积分基本特点是基本公式较多,灵活善变,复习此章节主要诀窍在于:基本公式熟练,基本题型运算快捷,有一定题量的训练。1.性质()()fxdxfx()()dfxdxfxdxCxFxdF)()(()()fxdxfxC()(1)()nnfdxfxC2.基本公式(1)11(1)1nnxdxxcnn,cxdxx||ln1(2)caadxaxxln,cedxexx(3)cxxdxcossin,cxxdxsincos,-79-cxxdxtansec2,cxxdxcotcsc2(4)caxdxxaarcsin122,(5)cxaxaadxxa||ln21122(6)221ln||dxxxacxa(7)caxaxaarctan1122二、不定积分的三种基本方法1.凑微分法(第一类交换法)基本原理:()(())xdxdxdx。一些常见的固定类型)()(1)(baxdbaxfadxbaxf1()()xxxxfeedxfede222)(21)(dxxfdxxxfnnnndxxfndxxfx)(1)(1xdxfdxxfxln)(ln)(ln1xdxfdxxxfcos)(cos)(cossinxdxfdxxxfsin)(sin)(sincos21111fdxfdxxxx-80-xdxfdxxxftan)(tan)(tansec2tansec(sec)(sec)secxxfxdxfxdx等等。例3.1.22007(21)xxdx解:原式=2200722200811(21)(21)(21)48032xdxxc例3.2.3sin13sin13sin111cos(3sin1)33xxxxedxedxec例3.3.23sin(57)xxdx解:原式331sin(57)3xdx331sin(57)(57)15xdx31cos(57)15xC例3.4.dxxxx1ln2ln1解:原式xdxxln1ln2lnduuuxu1211221lnduu)1211(2111ln2124uuCCxx1ln2ln41ln21例3.5.44xdxx解:原式=2222)(2121dxxCx2arctan412例3.6.221cos(2tan1)dxxx解:原式222sec1tan12tan12tanxdxdxxx1arctan(2tan)2xC例3.7.2sin(2)xdxx解:原式21112sin22(1cos2)sin(2)224xdxuxuduuuC-81-=1sin(4)4xxC例3.8.dxexex解:原式xxxexexeeedxedeeC例3.9.dxxxx2233解:利用综合除法知12127222323xxxxxx原式Cxxxxdxxxx2ln12731)21272(232例3.10.dxxxxx13236解:原式42222(1)1xxxxdxx53222211111(1)253211xxxxdxdxxx5322111ln(1)2arctan532xxxxxxC例3.11.,sin1dxxdxxcos1解:221sincos11coslnsinsin1cos21cosxdxxdxdxCxxxxdxxcos122cossin11sinlncos1sin21sinxdxxdxCxxx注:此例对于三角函数相当重要,请熟练掌握。*例3.12.dxxcos21解:原式dxxxx)cos2)(cos2(cos2xxddxxdxxx222sin3sincos42cos4cos2-82-222sec1sinarctan()4sec133xxdxx2tan1sin2arctan()4tan333dxxx222tan1sinarctan()(2tan)(3)33dxxx1tan1sinarctan(2)arctan()3333xxxC例3.13.sinsincosxdxxx解:原式=1(sincossincos)2sincosxxxxdxxx=11(cossin)22sincosdxxdxxx=11lnsincos22xxxc例3.14.cos2sin3cosxdxxx解:令()2sin3cosfxxx,则()2cos3sin,fxxx32cos()()1313xfxfx原式=32()()321313ln|2sin3cos|()1313fxfxdxxxxCfx例3.15.2212sincosdxxx解:原式=222sec11tanarctan(2tan)2tan12tan12xdxdxxCxx例3.16.xdx4tan解:原式=dxxxx]1)1(tantan[tan224=dxxdxdxxx222sec)tan1(tan=2tantantanxdxxxc=31tantan3xxxc例3.17.dxxxx22322-83-解:原式=dxxx1)1(5)1(22=222(1)15(1)1(1)1dxdxxx=cxxx)1arctan(5)22ln(2例3.18.232xdxxx解:原式=2114(1)xdxx=2221(1)1(1)24(1)4(1)dxdxxx=-214(1)arcsin2xxc例3.19.21xedx解:原式=dxeeexxx22211=2221xxdexe=cexx)1ln(22例3.20.dxxx)23)(121(解:原式=dxxxxx)23)(12()23(2)12(3=dxxdxx122233=cxx12ln23ln例3.21.dxxx)1()1(12解:原式=dxxxxx)1()1(11212=dxxx211211121=1111ln2141xcxx例3.22.dxex112解:原式=211xxdxee=dxeexx21=2)(1xxede=cexarcsin例3.23.33sectanxxdx-84-解:原式=22425311sectansec(secsec)secsecsec53xxdxxxdxxxC例3.24.324arctan1xxdxx解:原式=3223224241tan11tan(arctan)arctan()2128xdxxdxxCx2.直接交换法a)题型dxbaxf)(方法:令baxt,abtx)(2,2()()faxbdxtftdta例3.25.dxx11解:令2,txxt,原式=tdtt211=122tdtdt=ctt1ln22=cxx)1ln(22例3.26.1213dxxx解:令1,12txxt原式=22222211112(1)24(1)3(1)3(1)3ttdtdtdtdtttttt=211111ln(24)arctan()ln(213)arctan()3333txttCxxC例3.27.dxxx31解:原式665236xtxttdttt=dttt163=dtttt)111(62=ctttt)1ln(63223=cxxxx)1ln(632663-85-例3.28.dxex11解:原式21ln(1)xtextdtttt1212=dtt1122=ctt11ln=ceexx)1111ln(b)题型dxbaxf)(222()faxdx变换taxsin22()faxdx变换taxtan22()fxadx变换taxsec例3.29.dxxx29解:令3sinxt,原式3cos3cos3sinttdtt=dtttsinsin132=tdtdttsin3sin13=31cosln3cos21costtCt=22291393ln23913xxCx例3.30.4211dxxx解:令tanxt,原式232444seccos1sinsintansecsinsintttdtdtdttttt=31csccsc3ttC例3.31.324xdxx-86-解:令2secxt,原式348sec2tansec8sec2tantttdttdtt=2388(1tan)tan8tantan3tdtttC(还原略)例3.32.32211dxx解:令tanxt,原式2321seccossinsec1xtdttdttcctx例3.33.21(2)22dxxxx解:令1tanxt,原式=221sincossincossincosttdtdttttt=22cossin12cos12sindtdttt=112cos112sinln||ln||2212cos2212sinttCtt(还原略)。3.分部积分法公式:udvuvvdu四种基本题型a)题型1xmPxedx例3.34.2(21)xxedx解:原式=222111(21)(21)2222xxxxdexeedx=221(21)2xxxeeC例3.35.21xedx-87-解:原式21txttttetdttdeteeC=212121xxxeeC例3.36.2432xxxedx解:24242221()222xxxxxeded22xu4422112222xxuuuedueudee=4224222221122222xxxxuuueeeCxeeeC题型2()cosmPxxdx或()sinmPxxdx例3.37.3sin(21)xxdx解:原式=333cos(21)cos(21)cos(21)222xdxxxxdx=33cos(21)sin(21)24xxxC例3.38.2cosxxdx解:原式=21cos21sin2244xxxdxxdx211sinsin2444xxxxdx=211sin2cos(2)448xxxxC例3.39.2cosxdxx解:原式=tantantantanln|cos|xdxxxxdxxxxC例3.40.sin(1)xdx解:原式sin(1)22cos(1)2cos(1)2cos(1)txttdttdttttdt2cos(1)2sin(1)2cos(1)2sin(1)tttCxxxC-88-题型3cosxexdx或sinxexdx例3.41.2cos3xexdx解:设2222113cos3cos3co