12.2.2用坐标表示轴对称磐石市中学学习目标1、掌握在平面直角坐标系中,关于x轴和y轴对称点的坐标特点,并能运用它解决简单的问题;2、能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。动动手画一画已知点A和一条直线MN,你能画出这个点关于已知直线的对称点吗?AA’MN∴A′就是点A关于直线MN的对称点。O然后延长AO至OA′,使AO=OA′.过点A作AO⊥MN于O,探究1:如图,在平面直角坐标系中你能画出点A关于x轴的对称点吗?·31425-2-4-1-3012345-4-3-2-1A(2,3)·A′(2,-3)你能说出点A与点A’坐标的关系吗?在平面直角坐标系中画出下列各点关于x轴的对称点.31425-2-4-1-3012345-4-3-2-1B(-4,2)··C(3,-4)·B′(-4,-2)·C′(3,4)思考:关于x轴对称的点的坐标具有怎样的关系?归纳:关于x轴对称的点的坐标的特点是:横坐标相等,纵坐标互为相反数.练习:1、点P(-5,6)与点Q关于x轴对称,则点Q的坐标为__________.2、点M(a,-5)与点N(-2,b)关于x轴对称,则a=_____,b=_____.(-5,-6)-25(简称:横轴横相等)探究2:如图,你能在平面直角坐标系中画出点A关于y轴的对称点吗?·31425-2-4-1-3012345-4-3-2-1A(2,3)·A′(-2,3)你能说出点A与点A′坐标的关系吗?在平面直角坐标系中画出下列各点关于y轴的对称点.31425-2-4-1-3012345-4-3-2-1B(-4,2)··C(3,-4)·B′(4,2)·C′(-3,-4)思考:关于y轴对称的点的坐标具有怎样的关系?归纳:关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标相等.练习:1、点P(-5,6)与点Q关于y轴对称,则点Q的坐标为__________.2、点M(a,-5)与点N(-2,b)关于y轴对称,则a=_____,b=_____.(5,6)2-5(简称:纵轴纵相等)小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x,y)关于x轴对称的点的坐标为______.点(x,y)关于y轴对称的点的坐标为______.(x,-y)(-x,y)1、完成下表.已知点(2,-3)(-1,2)(-6,-5)(0,-1.6)(4,0)关于x轴的对称点关于y轴的对称点(-2,-3)(2,3)(-1,-2)(1,2)(6,-5)(-6,5)(0,-1.6)(0,1.6)(-4,0)(4,0)2、(1)已知点P(2a+b,-3a)与点P′(8,b+2).若点p与点p′关于x轴对称,则a=_____b=_______.若点p与点p′关于y轴对称,则a=_____b=_______.246-20(2)将一个点的纵坐标不变,横坐标乘以-1,得到的点与原来的点的位置关系是;将一个点的横坐标不变,纵坐标乘以-1,得到的点与原来的点的位置关系是______关于y轴对称关于x轴对称3、分别写出下列各点关于x轴和y轴对称的点的坐标.(3,6)(-7,9)(6,-1)(-3.-5)(0,10)4、根据下列点的坐标的变化,判断它们进行了怎样的变换:⑴(-1,3)(-1,-3)⑵(-5,-4)(-5,4)⑶(3,4)(-3,4)⑷(1,0)(-1,0)4、已知点A(m+2,3)、B(-5,n+6)关于y轴对称,则m=,n=____(1)Q,P两点关于x轴对称;5、已知点Q(m,3),P(-5,n),根据以下要求确定m,n的值(2)Q,P两点关于y轴对称;(3)PQ∥x轴;(4)PQ∥y轴;-336、已知点A(2m+1,m-3)关于y轴的对称点在第四象限,则m的取值范围是。6、在平面直角坐标系中,写出所有与△ABC全等的△FED中,F点的坐标_。31425-2-4-1-30D23E5B-3-2CA(-2,3)F(2,3)(2,3)xy31425-2-4-1-30D23E5B-3-2CA(-2,3)F(2,-3)(2,3)(2,3)或(2,-3)xy6、在平面直角坐标系中,写出所有与△ABC全等的△FED中,F点的坐标_。31425-2-4-1-30D23E5B-3-2CA(-2,3)F(3,3)(2,3)或(2,-3)或(3,3)xy6、在平面直角坐标系中,写出所有与△ABC全等的△FED中,F点的坐标_。31425-2-4-1-30D23E5B-3-2CA(-2,3)F(3,-3)(3,3)(2,3)或(2,-3)或(3,3)或(3,-3)xy6、在平面直角坐标系中,写出所有与△ABC全等的△FED中,F点的坐标_。例:已知△ABC的三个顶点的坐标分别为A(-3,5),B(-4,1),C(-1,3),作出△ABC关于y轴和x轴对称的图形。解:点A(-3,5),B(-4,1),C(-1,3),关于y轴对称点的坐标分别为A′(3,5),B′(4,1),C′(1,3).依次连接A′B′,B′C′,C′A′,就得到△ABC关于y轴对称的△A′B′C′.····A31425-2-4-1-3012345-4-3-2-1··cBB′A′C′归纳:对于这类问题,只要先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.探究3:如图,分别作出点P,M,N关于直线x=1的对称点,你能发现它们坐标之间分别有什么关系吗?31425-2-4-1-3012345-4-3-2-1x=1······P(-2,3)M(-1,1)N′(5,-2)N(-3,-2)M′(3,1)P′(4,3)思考:1、在平面直角坐标系中,点(x,y)关于直线x=1对称点的坐标是多少?2、在平面直角坐标系中,点(x,y)关于直线x=-1对称点的坐标是多少?3、在平面直角坐标系中,点(x,y)关于直线y=1对称点的坐标是多少?4、在平面直角坐标系中,点(x,y)关于直线y=-1对称点的坐标是多少?(-x+2,y)(-x-2,y)(x,-y+2)(x,-y-2)如图,小球起始时位于(3,0),沿所示的方向击球,小球运动轨迹如图所示,用坐标描述这个运动,找出小球运动的轨迹上关于直线l对称的点.如果小球起始时位于(1,0)处,仍按原来的方向击球,请你画出这时小球运动的轨迹.o123456781234l关于x轴对称的点横坐标相等,纵坐标互为相反数。关于y轴对称的点横坐标互为相反数,纵坐标相等。2、学习了在平面直角坐标系中如何画一个图形关于x轴或y轴的对称图形。先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.1、学习了在平面直角坐标系中,关于x轴和y轴对称的点的坐标的特点。小结作业: