武汉理工大学《计算机控制技术》课程设计说明书基于单片机的电阻炉温度控制系统设计、概述电阻炉在化工、冶金等行业应用广泛,因此温度控制在工业生产和科学研究中具有重要意义。其控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。采用单片机进行炉温控制,具有电路设计简单、精度高、控制效果好等优点,对提高生产效率、促进科技进步等方面具有重要的现实意义。此次课程设计温度控制系统的主要技术指标有:温控范围:300℃~1000℃;恒温时间:0~24小时;控制精度:±1℃;超调量1%。1整体设计及系统原理本系统由单片机AT89C51、温度检测电路、键盘显示、显示电路、温度控制电路等部分组成。系统中采用了新型元件,功能强、精度高、硬件电路简单。其硬件原理图如图1所示。在系统中,利用热电偶测得电阻炉实际温度并转换成毫伏级电压信号。该电压信号经过温度检测电路转换成与炉温相对应的数字信号进入单片机,单片机进行数据处理后,通过液晶显示器显示温度,同时将温度与设定温度比较,根据设定计算出控制量,根据控制量通过控制继电器的导通和关闭从而控制电阻丝的导通时间,以实现对炉温的控制。图1硬件原理图程序流程图AT89C51单片机键盘显示传感器电阻炉温度检测电路温度控制武汉理工大学《计算机控制技术》课程设计说明书2在系统软件中,主程序完成系统初始化和电炉丝的导通和关断;炉温测定、键盘输入、时间确定和显示、控制算法等都由子程序来完成;中断服务程序实现定时测温和读取时间。流程图如图2所示。图2总体流程图2硬件设计2.1温度检测电路本系统采用的K型(镍铬-镍硅)热电偶,其可测量1312℃以内的温度,其线性度较好,而且价格便宜。K型热电偶的输出是毫伏级电压信号,最终要将其转换成数字信号与CPU通信。传统的温度检测电路采用“传感器-滤波器-放大器-冷端补偿-线性化处理-A/D转换”模式,转换环节多、电路复杂、精度低。在本系统中,采用的是高精度的集成芯片MAX6675来完成“热电偶电势-温度”的转换,不需外围电路、I/O接线简单、精度高、成本低。MAX6675是MAXIM公司开发的K型热电偶转换器,集成了滤波器、放大器等,并带有热电偶断线检测电路,自带冷端补偿,能将K型热电偶输出的电势直接转换成12位数字键盘输入及目标炉温设置开始系统初始化设置炉温测量与显示炉温等于下限温度?炉温等于上限温度?PID算法控制炉温加热全速加热等于目标温度且稳定时间到?YN停止加热YN炉温测定并显示结束YN武汉理工大学《计算机控制技术》课程设计说明书3量,分辨率0.25℃,工作电压为3.0~5.5V。温度数据通过SPI端口输出给单片机,其冷端补偿的范围是-20~80℃,测量范围是0~1023.75℃。表1为MAX6675的引脚功能图:表1MAX6675的引脚功能图引脚号名称功能1GND接地端2T-热电偶负极(使用时接地)3T+热电偶正极4VCC电源端5SCK串行时钟输入端6片选信号7SO数据串行输出口8NC悬空不用当MAX6675的CS引脚从高电平变为低电平时,MAX6675将停止任何信号的转换并在时钟SCK的作用下向外输出已转化的数据。相反,当CS从低电平变回高电平时,MAX6675将进行新的转换。在CS引脚从高电平变为低电平时,第一个字节D15将出现在引脚SO。一个完整的数据读过程需要16个时钟周期,数据的读取通常在SCK的下降沿进行。MAX6675的输出数据为16位,其中D15始终无用,D14~D3对应于热电偶模拟输入电压的数字转换量,D2用于检测热电偶是否断线(D2为1表明热电偶断开),D1为MAX6675的标识符,D0为三态。需要指出的是:在以往的热电偶电路设计中,往往需要专门的断线检测电路,而MAX6675已将断线检测电路集成于片内,从而简化了电路设计。D14~D3为12位数据,其最小值为0,对应的温度值为0℃;最大值为4095,对应的温度值为1023.75℃;由于MAX6675内部经过了激光修正,因此,其转换结果与对应温度值具有较好的线性关系。温度值与数字量的对应关系为:温度值=1023.75×转换后的数字量/4095。由于MAX6675的数据输出为3位串行接口,因此只需占用微处理器的3个I/O口。图2是以89C51系列单片机为例给出的系统连接图。使用时,可用软件模拟同步串行读取过程。图中串行外界时钟由微处理器的P1.3提供,片选信号由P1.2提供,转换数据由P1.1读取。热电偶的模拟信号由T+和T-端输入,其中T-需接地。MAX6675的转换结果将在SCK的控制下连续输出。武汉理工大学《计算机控制技术》课程设计说明书4图3温度检测电路2.2键盘控制和显示电路按键控制电路如图所示,分别接在单片机P0.0—P0.5口。它由9个按键构成,直接与单片机I/O口相连。当按键闭合时,单片机的P0.0—P0.2口的高电转移到P0.3—P0.5口。当用于温度调节时,开关分别用于调整温度的上下限值,以及控制温度的输出。另外,设定1键用于显示采集的温度,第二次按下则进行温度的上限调整,第三次按下进行温度的下限调整,第四次按下则进行采集温度的显示构成循环。选择2键进行移位调整,第一次显示个位,第二次显示十位。3键用于增加一个数,按下一次在原基础之上加1,这个值在0-9-0之间变化。4键用于减少一个数,按下一次在原基础之上减1,这个值在9-0-9之间变化。图4键盘接口电路显示电路采用3位共阳LED动态显示方式,选用7段显示数码管7SEG-COM-ANODE。显示内容有温度值的十位、个位及小数点后一位。用P2口作为段控码输出,并用74LS244作驱动。P1.4—P1.6作为位控码输出,用PNP型三极管做驱动。模块电路如下图5:武汉理工大学《计算机控制技术》课程设计说明书5图5显示接口电2.3加热控制电路用于在闭环控制系统中对被控对象实施控制,被控对象为电热杯,采用对加在电热杯两端的电压进行通断的方法进行控制,以实现对水加热功率的调整,从而达到对水温控制的目的。对电炉丝通断的控制采用SSR-40DA固态继电器。它的使用非常简单,只要在控制端TTL电平,即可实现对继电器的开关,使用时完全可以用NPN型三极管接成电压跟随器的形式驱动。当单片机的P1.7为高电平时,三极管驱动固态继电器工作接通加热器工作,当单片机的P1.7为低电平时固态继电器关断,加热器不工作。控制电路图如下图6:图6电阻炉的温度控制图其中,固态继电器SSR-40DA是由固态元件组成的无触点开关,具有工作安全可靠、寿命长、无触点、无火花、无污染、高绝缘、高耐压(越过2.5kv)、低触发电流、开关速武汉理工大学《计算机控制技术》课程设计说明书6度快、可与数字电路巨配,以阻燃型环氧树脂为原料,采用灌封技术,使与外界隔离,具有良好的耐压、防潮、防腐、抗震动等性能。固态继电器内部采用电压过零时开启,负载过零时关断的特性,在负载上可以得到一个完整的正弦波形。因此电路的射频干扰很小,可降低感性负载(如风扇、三相电动机等)的反电动势以及驱动阻性负载(如白炽灯、发热丝等)时可显著降低浪涌电流等优点,其内部结构如图7:图7SSR-40DA内部结构图触发电路输入光电耦合电路过零控制电路开关电路吸收电路输出武汉理工大学《计算机控制技术》课程设计说明书7