1.1.3导数的几何意义xxfxxflimxylimxf0x0x000-+==即:000xxyfxxxfxy=函数=在=处的导数,记作:或表示“平均变化率”xx-fx+xf=00xy一、复习1、导数的定义其中:其几何意义是表示曲线上两点连线(就是曲线的割线)的斜率。'000'0,,.,?fxfxxxfxxxfx我们知道导数表示函数在处的瞬时变化率反映了函数在附近的变化情况那么导数的几何意义是什么呢P1P2P3P4PTTTTPPxfyxfyxfyxfyOyxOyxOyxOyx1234?,,4,3,2,1,00什么是趋势化变的割线时趋近于点沿着曲线当点察观nnnnPPxfxPxfnxfxPyxo)(xfyP相交再来一次当点Pn沿着曲线无限接近点P即Δx→0时,割线PPn趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.此处切线定义与以前学过的切线定义有什么不同?切线Pl能否将圆的切线的概念推广为一般曲线的切线:直线与曲线有唯一公共点时,直线叫曲线过该点的切线?如果能,请说明理由;如果不能,请举出反例。不能xyo直线与圆有惟一公共点时,直线叫做圆的切线。所以,不能用直线与曲线的公共点的个数来定义曲线的切线。圆的切线定义并不适用于一般的曲线。通过逼近的方法,将割线趋于的确定位置的直线定义为切线(交点可能不惟一)适用于各种曲线。所以,这种定义才真正反映了切线的直观本质。2l1lxyABCxoyy=f(x)P(x0,y0)Q(x1,y1)M△x△y割线与切线的斜率有何关系呢?xxfxxfkPQ)()(xy00=即:当△x→0时,割线PQ的斜率的极限,就是曲线在点P处的切线的斜率,xxfxxfxyxx)()(k0000limlim=所以:0xf函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是.)(0xf故曲线y=f(x)在点P(x0,f(x0))处的切线方程是:))(()(000xxxfxfy导数的几何意义例1:2210[(1)1](11)|limxxxyx解:22(1)yx切线方程:20xy即:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.导数的几何意义的应用202lim2xxxxyx-2-112-2-11234OP313yx31(1),3yx解:.42|22xy即点P处的切线的斜率等于4.(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.330011()33limlimxxxxxyyxx2230133()()lim{}3xxxxxxx22201lim{[33()]}.3xxxxxxyx-2-112-2-11234O313yxP二、函数的导数:(3)函数f(x)在点x0处的导数就是导函数在x=x0处的函数值,即。这也是求函数在点x0处的导数的方法之一。)(0xf)(xf0|)()(0xxxfxf小结:(2)函数的导数,是指某一区间内任意点x而言的,就是函数f(x)的导函数。)(xf(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”之间的区别与联系。(4)曲线在某点处的切线与该点的位置有关典例