——小议生命发展史目录生命起源生命演化的历程生物演化史总结生命起源构成生命的元素宇宙中的生命分子原始生命的有机汤叠层石生物单分子粘土矿物与生命火山与生命生命构成的元素地球上有很多种元素,但用于构成生命的元素并不多,主要有C、H、O、N四种,此外还有S、P及其他一些微量元素。我们知道组成生命的主要物质是蛋白质、水分和无机盐三大类。元素分析表明,蛋白质一般含碳50%~55%、氧20%~23%、氮15%~18%、氢6%~8%、硫0%~4%,有些蛋白质还含有微量的P、Fe、Zn、Cu、Mo等。宇宙中的生命分子过去曾认为,星际空间不存在任何物质,是绝对的真空。1930年特蓝普勒在测定疏散星团直径时,发现星光在宇宙空间产生消光现象,由此发现了星际尘埃。20世纪50年代以来,由于红外和射电观测技术及实验波谱研究手段的进步,越来越多的星际物质被探测出来。特别是1969年斯奈德(L.E.Snyder)观测到有机分子甲醛(HCHO)的6cm谱线,轰动了世界,被誉为20世纪60年代天体物理的重大发现,他的发现还激发了天文学家去探索星际分子的热情。到1991年,已发现92种星际分子,2000多条分子谱线。最新的消息是美国伊利诺斯州立大学的射电天文学家路易斯·辛德通过频谱在靠近银河系中心的星云中发现了生命分子——氨基酸,这一发现有可能解释生命的起源问题。星际有机分子的普遍存在启示我们,在宇宙的恒星体系中,具备产生生命条件的行星(类地球)为数不少,在那些行星上必然会出现生命,乃至进化为智慧生物。因此,探索宇宙生命将是人类在搞清自己之后的下一个探求目标。简单的有机合成在地球形成之初就开始了,主要发生在大气圈中,所形成的简单低相对分子量有机物与地壳表面的水体作用,形成含有机化合物的水溶液,在某些火山活动区域有可能形成浓的溶液。这些稀的和浓的溶液最后汇集到大的水体或原始海洋中。这就是现今流行的观点:生命起源于早期地球“温暖小水池”的“有机汤”中。叠层石(stromatolite)是前寒武纪未变质的碳酸盐沉积中最常见的一种“准化石”,是原核生物所建造的有机沉积结构。由于蓝藻等低等微生物的生命活动所引起的周期性矿物沉淀、沉积物的捕获和胶结作用,从而形成了叠层状的生物沉积构造。根据Walter(1983)的统计,已知在澳大利亚、北美和南非三个不同大陆的11个地点发现了太古宙的叠层石,其年龄都在25亿年以上。晚元古代(20亿年前到7亿年前)是地史上叠层石最繁盛的时期,其分布广泛、形态多样。后生动物出现(7亿年前)以后叠层石骤然衰落。古生代寒武纪至泥盆纪叠层石数量和分布范围有限,但仍不难见到。泥盆纪以后叠层石只是残存了。现代海相叠层石只分布在澳大利亚、中美洲、中东等地的少数地区的特殊环境中。通常叠层石产出于灰岩和白云岩中,有些叠层石发育在燧石、磷酸盐岩(胶磷矿)中,由磁铁矿和赤铁矿构成的叠层石以及锰叠层石也颇为常见。生物单分子•在原始地球条件下,生物单分子是从无到有创造出来的,即由生命元素在外动力(能源)的推动下,通过无机化合而成。生命元素在原始地球的大气中广泛存在,外动力无疑也是不成问题的。现在的研究资料表明,放电、紫外线、热能都可以促使生命元素合成生物单分子。所以,原始大气是生物单分子的诞生地,并使生物单分子在原始地球上普遍分布,从而能使其中一部分生物单分子在一定条件下形成生物大分子。第一个模拟原始大气进行放电实验获得氨基酸的是米勒(S.L.Miller,1953)。粘土矿物这种地球上最常见的物质是最初的生命物质,这一说法已不再是西方的圣经故事和中国的神话传说,而是新的科学研究成果。粘土矿物是一种微小的晶体,科学家们发现,粘土矿物晶体中存在一种有趣的缺陷结构,这种结构可能保存相当多的信息,从而决定晶体生长的取向和构型。因此,对于诸如属于“低技术”的催化剂和膜等原始控制结构来说,这些无机晶体作为一种构造物质要比大的有机分子更为合适得多。这一学说认为:原始地球火山活动频繁,形成局部高温缺氧地区,使得附近水池里的有机物形成大量的氨基酸和核酸。当水池由于高温蒸发干枯时,氨基酸弱聚合脱水反应形成多肽等高聚物,后由雨水搬运到海洋,氨基酸自我装配形成蛋白质。这样,就为生命起源提供了所需的有机分子。生命的演化史总论宇宙起源大爆炸生命的构成元素生物大分子复杂先进的生物元素演化化学演化生物学演化广义而言,生命起源应当追溯到与生命有关的元素及化学分子的起源。因而,生物圈演化的历程应当从宇宙形成之初,即通过所谓“大爆炸”(“BigBang”)产生了碳、氢、氧、氮、硫、磷等构成生命的主要元素之时起。一个大体的演化历程表示在图中,从图中可以看出,生命的起源和演化是和宇宙的起源与演化密切关联的,生命构成元素如碳、氢、氧、氮、硫和磷等是来自“大爆炸”后的元素演化。在星系演化中某些生物单分子,如氨基酸、嘌呤、嘧啶等形成于星际尘埃或凝聚的星云中,接着在一定的条件下产生了像多肽、多聚核苷酸等生物高分子。现在许多资料表明,前生物阶段的化学演化并不局限于地球,在宇宙空间广泛地存在着化学演化的产物。通过遗传密码的演化和若干前生物系统的过渡形式,最终在地球上产生了最原始的生物系统,即具有原始细胞结构的生命。至此,生物学演化开始,直到今天在地球上产生了无数复杂的先进的生命形式,包括像人类这样的智慧生物。•广义而言,生命起源应当追溯到与生命有关的元素及化学分子的起源。因而生物圈演化的历程应当从宇宙形成之初,通过所谓“大爆炸”(“BigBang”)产生了碳、氢、氧、氮、硫、磷等构成生命的主要元素之时起。碳、氢、氧、氮、硫和磷这六种生命元素构成了地球上生物体物质总量的98%,而这些元素是伴随着宇宙起源和演化过程而产生的。宇宙的状态和宇宙物质运动的基本规律法则的特殊结合造成了生命起源和演化的可能性。宇宙中的物质诞生在爆炸之中。氢和氦是在距今约150亿年前的大爆炸强烈热辐射中形成的。构成我们自己的、更复杂的碳、氧、钙、铁原子起源于恒星的燃烧着的深处。像铀之类的重元素是在超新星爆发的冲击波内合成的。形成生物原料的这些核过程发生在最不适宜于生物居住的环境中。一旦形成了元素,剧烈的爆发就把这些元素送回到恒星之间的太空中。在那里,万有引力将这些元素铸成新的恒星和行星,而电磁作用将它们造成生命的化学物质。高相对分子量的生物有机化合物主要是指蛋白质、核酸以及高相对分子量的碳氢化合物。与低相对分子量的生物有机化合物相比,高相对分子量的有机化合物具有更高级的物质群。它们是由低相对分子量的有机化合物经过聚合而成的多分子体系。从化学结构而言,蛋白质是由α-L-氨基酸脱水缩合而成的,核酸是由嘌呤和嘧啶碱基,与糖D-核糖或2-脱氧-D-核糖)、磷酸脱水缩合而成,多糖是由单糖脱水缩合而成。由此可知,由低相对分子量的生物有机化合物变为高相对分子量的生物有机化合物的化学反应都是脱水缩合反应。在原始地球条件下,有两条路径可以达到脱水缩合以形成高分子:其一是通过加热,将低相对分子量的构成物质加热使之脱水而聚合;其二是利用存在于原始地球上的脱水剂来缩合。前者常常是在近于无水的火山环境中进行,后者则可以在水的环境中进行。•后生动植物产生后,逐渐形成了复杂、先进的生物系统。一般的看法是后生植物与后生动物来自共同的祖先——单细胞的真核生物,即所谓的原生生物(protista)。前已述及,单细胞真核生物是由原核生物祖先通过直接演化或细胞内共生而产生的。由单细胞真核生物向多细胞的后生动植物的转变是生命历史中的一个重大的演化事件。后生动物和植物可能同时达到多细胞化(multicellularity),在这个过程中,生物的体积增大,组织器官分化。后生动物和后生植物如何由原始的单细胞真核生物演化分支出来?谁先谁后?对这些问题目前还没有一致的看法。按照新近时兴的细胞内共生假说来解释后生动植物的起源是这样的:某些异养的、行吞噬作用的单细胞真核生物祖先可能以吞噬原核生物为生,其中一些与行光合作用的原核生物发生细胞内共生,形成能进行光合作用的自养的真核生物,经过进一步演化,成为后生植物。另外一些仍保留异养功能,演变成为变形虫、鞭毛虫、纤毛虫等原生动物和真菌。从异养的原生动物再进一步演化出海绵、水母以及无体腔的原始后生动物。►生命的起源和演化是和宇宙的起源和演化密切关联的,生命的构成元素如碳、氢、氧、氮、硫和磷等都是“大爆炸”的产物。在星系演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等形成于星系尘埃或凝聚的星云中,接着在一定的条件下,产生了像多肽多聚核苷酸等生物高分子。生命的起源和演化是和宇宙的起源和演化密切关联的,生命的构成元素如碳、氢、氧、氮、硫和磷等都是“大爆炸”的产物。在星系演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等形成于星系尘埃或凝聚的星云中,接着在一定的条件下,产生了像多肽多聚核苷酸等生物高分子。•地球上第一个单细胞原始生命的出现标志着生命演化进入了一个新阶段——生物学演化。我们把原始生命出现之后的演化叫做生物学演化。生物学的演化又可以分为早期和晚期两个阶段。早期生物学的演化又可称为细胞演化阶段;晚期生物学演化又可称之为组织器官演化阶段,或系统演化阶段。细胞演化阶段是从原始的单细胞生命产生到后生动植物的大量出现,持续了25亿年以上。后生动植物出现后,生物进入系统演化阶段,在大约7亿年的时间内,数以千万计的物种经历了形成和绝灭的演化历程。生命的摇篮生命的分类最古老的岩石和生命记录动物从无脊椎到有脊椎的进化鸟类的起源后生物的出现动物登陆哺乳动物生命源于地球,而且是地球的产物。即使如克里克(F.Crick)所认为的生命来自地外,地球仍然是生命的摇篮。今天的生命看来是由第一个生物经过再生、繁殖和演化,进而形成无数的生命形态并布满整个地球。古菌类和后来的细菌在水里、空气中和地上迅速繁殖,在20多亿年中构成了一个生物圈。这个生物圈的成员之间彼此交流,由此又先后产生了真菌和真核生物。然后,它们又集合和组织成多细胞植物和动物。生命在海洋里蔓延开来,它们登上陆地,使世界充满树木和花草,又随着昆虫和鸟类飞翔天空。于是,在地球上形成和成长起“生命之树”。人类是这棵生命进化树最奇异的枝条。因此,在地球上诞生的生命和地球是休戚与共的。传统的分类学家将地球上的生命划分为两个界,即植物界和动物界,从而造成了我们的偏见:不是植物就是动物。70年代,康奈尔大学的生态学家H·魏塔克(R.H.Wittaker)提出一种五界系统,说明生命的构成(《科学》,1969年1月10日)。后来,波士顿大学的生物学家林恩·马古利斯(LynnMargulis)支持并扩充了魏塔克的框架(《进化生物学》,1974)。专家们现在提出,生命中最基本的划分并不是在“高等”的植物与动物之间,而是在单细胞之间。地球上最古老的沉积岩大约有38亿年的历史,也就是说,地球凝聚8~9亿年后才形成硬的地壳,生命才有了立足之地。古生物学家发现的最老的有细胞结构的生命的证据是西澳大利亚的Warrawoona微生物化石群(35亿年),表明地壳形成后不到3亿年生物演化就开始了。但是大多数地质学家认为,最古老的原始生命是和最古老的沉积岩同龄,即38亿年,其重要的证据是格陵兰西部Isua沉积岩中的条带状铁建造(BIF)。此外,在南非有34亿年年龄的Swaziland超群古老岩层中存在简单的层状叠层石,年龄为33亿年的南非Onverwacht群的碳同位素比值有一个明显的变化,由此推断光合作用的历史可追溯到33~35亿年前。动物化石出现在前寒武纪晚期最早的。软躯体后生动物在震旦纪冰期之后得到突发性的迅猛发展,在距今7亿~6亿年间成为海洋生物的统治者。进入寒武纪(距今6亿年)后,软躯体后生动物衰退,带壳后生动物随之兴起。这一生物发展阶段可分为前埃迪卡拉和埃迪卡拉两个亚阶段。前埃迪卡拉亚阶段以中国的淮南生物群为代表,埃迪卡拉亚阶段以澳大利亚的埃迪卡拉动物群为代表现代生物学研究表明,脊椎动物是由低等的无脊椎动物进化而来的,大致的进化过程是由与无脊椎的棘皮动物亲缘关系密切的原始脊索动物中的半索动物或隐索动物到头索动物