1、如右图,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速周运动,星球A和B两者中心之间距离为L。已知A、B的中心和O三点始终共线,A和B分别在O的两侧。引力常数为G。⑴求两星球做圆周运动的周期。⑵在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者平方之比。(结果保留3位小数)解答:⑴A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等。且A和B和O始终共线,说明A和B有相同的角速度和周期。因此有RMrm22,LRr,连立解得LMmmR,LMmMr对A根据牛顿第二定律和万有引力定律得LmMMTmLGMm22)2(化简得)(23mMGLT⑵将地月看成双星,由⑴得)(231mMGLT将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得LTmLGMm22)2(化简得GMLT322所以两种周期的平方比值为01.11098.51035.71098.5)(242224212MMmTT2、现有一个弹簧测力计(可随便找地方悬挂),一把匀质的长为l的有刻度、零点位于端点的直尺,一个木块及质量不计的细线.试用这些器件设计一实验装置(要求画出示意图),通过一次测量(弹簧测力计只准读一次数),求出木块的质量和尺的质量.(已知重力加速度为g)解答:找个地方把弹簧测力计悬挂好,取一段细线做成一环,挂在弹簧测力计的挂钩上,让直尺穿在细环中,环与直尺的接触点就是直尺的悬挂点,它将尺分为长短不等的两段.用细线栓住木块挂在直尺较短的一段上,细心调节直尺悬挂点及木块悬挂点的Gx20x1mM位置,使直尺平衡在水平位置(为提高测量精度,尽量使二悬挂点相距远些),如图所示.设木块质量为m,直尺质量为M.记下二悬挂点在直尺上的读数x1、x2,弹簧测力计读数G.由平衡条件和图中所设的直尺零刻度线的位置有GgMm)((1)2122)(xlMgxxmg(2)(1)、(2)式联立可得1222xlxlgGm(3)11222xlxxgGM(4)