24.1.2---垂直于弦的直径课件-人教新课标版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

24.1.2垂直于弦的直径墨红镇中学李应稳问题:你知道赵州桥吗?它是1300多年前我国隋代建造的石拱桥,是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m,拱高(弧的中点到弦的距离)为7.2m.问题情境你能求出赵州桥主桥拱的半径吗?把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.一、实践探究如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB于E点.(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?·OABCDE二、(2)你能发现图中有那些相等的线段和弧?为什么?把圆沿着直径CD折叠时,CD两侧的两个半圆重合,点A与点B重合,AE与BE重合,AC与BC重合,AD与BD重合.因此AE=BE即直径CD平分弦AB,并且平分AB及ACB⌒⌒AC=BC⌒⌒AD=BD⌒⌒⌒OBCD·AE⌒⌒⌒⌒·OABCDE垂径定理:垂直于弦的直径,平分弦且平分弦所对的两条弧.归纳条件结论换言之:垂径定理:若一条直线满足:条件(1)过圆心(2)垂直于弦,则它(3)平分弦(4)平分弦所对的优弧,(5)平分弦所对的劣弧.也可以说:直径垂直于弦垂径定理三种语言1.定理垂直于弦的直径,平分弦且平分弦所的两条弧老师提示:垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.●OABCDM└CD⊥AB,如图∵CD是直径,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.如图,AB是⊙O的一条弦,作直径CD,使AE=BE(1)CD⊥AB吗?为什么?(2)·OABCDE⌒AC与BC相等吗?AD与BD相等吗?为什么?⌒⌒⌒三、③AM=BM,由①CD是直径②CD⊥AB可推得⌒⌒⑤AD=BD.⌒⌒④AC=BC,②CD⊥AB,由①CD是直径③AM=BM⌒⌒④AC=BC,⌒⌒⑤AD=BD.可推得DCABEO推论:判断下列说法的正误①平分弧的直径必平分弧所对的弦②平分弦的直线必垂直弦③垂直于弦的直径平分这条弦④平分弦的直径垂直于这条弦⑤弦的垂直平分线是圆的直径⑥平分弦所对的一条弧的直径必垂直这条弦⑦在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧小试牛刀:如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径。解:连结OA,作OE⊥AB于点E,则OE=3厘米,AE=BE.∵AB=8厘米∴AE=4厘米在RtAOE中,据勾股定理有OA=5厘米∴⊙O的半径为5厘米。注意:圆心到弦的距离叫弦心距.AEBO解决求赵州桥拱半径的问题AB如图,用AB表示主桥拱,设AB所在圆的圆心为O,半径为R.过圆心O作弦AB的垂线OC,垂足为D,OC与AB相交于点D,根据前面的结论,D是AB的中点,C是AB的中点,CD就是拱高.AB=48米,CD=16米BODACR实践应用:⌒⌒⌒⌒⌒·OABCDE若直径平分弦(弦不是直径),则这条直径垂直于弦,且平分弦所对的两条弧.归纳:或者说:若直径平分一条不是直径的弦,则这条直径垂直于弦,并且平分弦所对的两条弧.几何语言表述:AC=BCCD⊥AB,由CD是直径AE=BE可推得⌒⌒AD=BD⌒⌒DCABEO定理及推论,总结:一条直线只需满足:条件(1)过圆心(2)垂直于弦,(3)平分弦(4)平分弦所对的优弧,(5)平分弦所对的劣弧.中的任意两个条件,就能推出其它三个.简称“知二推三”.如图,AB是⊙O的一条弦,CD是直径,且AE=BEOE=5,AB=24,求⊙O的半径·OABCDE练一练:驶向胜利的彼岸挑战自我填一填1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()(2)经过弦的中点的直径一定垂直于弦.().(3)弦的垂直平分线一定平分这条弦所对的弧.()√驶向胜利的彼岸挑战自我画一画2.已知:如图,⊙O中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有:.图中相等的劣弧有:.FEOMNABCD1.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.D·OABCE证明:OEACODABABAC909090OEAEADODA∴四边形ADOE为矩形,又∵AC=AB1122AEACADAB,∴AE=AD∴四边形ADOE为正方形.提高练习2.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE。∴AE-CE=BE-DE即AC=BD.ACDBOE注意:解决有关弦的问题,常过圆心作弦的弦心距,或作垂直于弦的直径,它是一种常用辅助线的添法.4:在圆O中,直径CE⊥AB于D,OD=4㎝,弦AC=㎝,求圆O的半径。10DCEOAB反思:在⊙O中,若⊙O的半径r、圆心到弦的距离d、弦长a中,任意知道两个量,可根据定理求出第三个量:CDBAO3:如图,圆O的弦AB=8㎝,DC=2㎝,直径CE⊥AB于D,求半径OC的长。DCEOAB垂径直径MN⊥AB,垂足为E,交弦CD于点F.练习5:如图,CD为圆O的直径,弦AB交CD于E,∠CEB=30°,DE=9㎝,CE=3㎝,求弦AB的长。EDOCAB6已知:⊙O中弦AB∥CD。求证:AC=BD⌒⌒.MCDABON证明:作直径MN⊥AB。∵AB∥CD,∴MN⊥CD。则AM=BM,CM=DM(垂直平分弦的直径平分弦所对的弧)AM-CM=BM-DM∴AC=BD⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒总结:解决有关弦的问题,经常是过圆心作弦的弦心距,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件。.CDABO.CDABOCDABOMNMMNEE.ACDBO.ACDBO.ABO.ABOABO船能过拱桥吗2.如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?相信自己能独立完成解答.船能过拱桥吗解:如图,用表示桥拱,所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与相交于点C.根据垂径定理,D是AB的中点,C是的中点,CD就是拱高.由题设得ABABABAB.5.121,4.2,2.7MNHNCDABABAD21,6.32.721DCOCOD.4.2R在Rt△OAD中,由勾股定理,得,222ODADOA.)4.2(6.3222RR即解得R≈3.9(m).在Rt△ONH中,由勾股定理,得,22HNONOH.6.35.19.322OH即.21.25.16.3DH∴此货船能顺利通过这座拱桥.垂径定理的应用在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.BAOED┌600垂径定理的逆应用在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.BAO600ø650DC课后小结1、要把实际问题转变成一个数学问题来解决.2、熟练地运用垂径定理及其推论、勾股定理,并用方程的思想来解决问题.3、对于一个圆中的弦长a、圆心到弦的距离d、圆半径r、弓形高h,这四个量中,只要已知其中任意两个量,就可以求出另外两个量,如图有:⑴d+h=r⑵222)2(adrhda2O1.垂径定理课后小结2.垂径定理的推论3.垂径定理的应用4.作业:P

1 / 29
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功