高级计量经济学复习精要

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1高级计量经济学复习精要一、简答题(10分×2):(一)多重共线性问题:(主要看修正方法)1、多重共线性是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。2、产生原因主要有3各方面:(1)经济变量相关的共同趋势;(2)滞后变量的引入;(3)样本资料的限制。3、造成的后果:(1)完全共线性下参数估计量不存在;(2)近似共线性下OLS估计量非有效;(3)参数估计量经济含义不合理;(4)变量的显著性检验失去意义;(5)模型的预测功能失效。4、识别方法:(1)经验识别:对模型估计后,R2极高,多个变量不显著,出现与理论预期相悖的情况,有理由怀疑存在多重共线性。(2)相关系数法:计算变量间两两相关系数。只要其中一个大等于0.6或0.7,则表明可能存在严重的共线性。(3)膨胀因子法:计算每个解释变量的VIF,若某一个VIF≥10,则表明存在严重的共线性。5、修正方法:(※※※)根据潘老师讲课内容进行整理共线性的修正方法有很多,按照优劣程度排序,主要有五种方法:方法1:扩充样本以减弱共线性。主要通过增加自由度来提高精度,如将时序数据或截面数据变为面板数据,从而将一维数据变为二维。评价:这种方法最理想,但存在的缺点是:①效果不定;②不可行。方法2:工具变量法(IV)。主要通过工具变量,运用两阶段最小二乘完成。评价:这种方法目前最受欢迎,高质量的期刊论文通常都采用该方法。缺点是:①由于相关关系具有传导性,工具变量S很难找;②用S替代X,有时经济正当性不足。方法3:变量变换法。可以通过对数变换、绝对转相对和方程变换进行变量变换。评价:这种方法最简单易行,但存在的缺点是:①简单相关系数描述的是线性关系,而对数是非线性化过程;②功效不足;③不是所有变量都能用来做变换,必须有明确的经济学指代。方法4:逐步回归法。主要是通过降维减少变量来减弱共线性。评价:这种方法要慎用,最大的缺点是:虽然能很好地解决共线性问题,但是却引发了更严重的内生性问题。方法5:主成份分析法或因子分析法。具有降维的作用,主要用于多指标评价。评价:该方法很好地消除了共线性。但这种方法要慎用,最大的缺点是:经济含义伤害过大。(二)内生性问题1、内生性是指:模型中的解释变量与扰动项相关。通常我们做古典假设①i为白噪声,E()=0,var(i)=2,cov(ij)=0;②X是非随机变量(微观可以通过固定抽样得到解决,宏观则不可),则cov(X,)=0成立。但是当cov(X,)≠0时上述假设便不再成立,我们称之为内生性,进而导致OLS失效,是非一致性的。2、内生性产生的原因:①X与Y存在双向因果,即X影响Y的同时,Y也影响X;如金融发展与经济增长;外商直接投资FDI与经济增长;犯罪率与警备投入。②模型遗漏重要解释变量。无论是缺失重要解释变量导致,还是无法获取数据导致,被遗漏的重要变量进2入了残差项,如果与其他解释变量相关,就会出现cov(Ut,Xt)≠0,也就是内生性问题。③度量误差:由于关键变量的度量上存在误差,使其与真实值之间存在偏差,这种偏差可能会成为回归误差的一部分,从而导致内生性问题。(潘老师上课没讲③)3、解决方法:针对双向因果产生的内生性问题,比较容易解决,通过联立方程组即可。难处理的是遗漏重要解释变量的情况,通常采用的方法有:①工具变量法(IV):就是找到一个变量和内生化变量相关,但是和残差项不相关。通常采用2SLS方法进行回归。这种方法是找到影响内生变量的外生变量,连同其他已有的外生变量一起回归,得到内生变量的估计值,以此作为IV,放到原来的回归方程中进行回归。(假如我们考察一个工资决定模型012isalaryeducabliu首先,用Probit模型估计()(,)pworkfeducabli,得到ˆip其次,构建模型012ˆiisalaryeducablipv进行估计)②得分匹配与DID模型(双差分模型):思想是按照一定的标准,找到与样本match的控制组。在假设外在冲击同时影响两个组别的情况下,做差来剔除掉外界冲击的影响。第一步,该方法关键在于得分匹配的确定,配对样本的选择原则是保证两个样本随时间自然变化的部分是相同的,一般根据距离最近作为配对的样本点的方法进行匹配得分。第二步是估计方法,采用双重差分法(DID)。在假设外在冲击同时影响两个组别的情况下,做差来剔除掉外界冲击的影响。(在样本选择上,控制不可观测变量,然后利用双差分模型进行估计Eg:012isalaryeducabliu(1)样本抽取时,将ablity相等或相近的观测值进行配对(匹配标准IQ/双胞胎)(2)用双差分模型(DID)进行参数估计01ln(-ln(-+isalarysalaryeduceduc对照组对照组得分组得分组))v估计出1ˆ,等价于原模型中的1ˆ不足:样本要求非常大,尤其是用多重标准进行匹配时,样本要求更大。)潘老师举得例子二、虚拟变量:(20分)(给出实际经济问题,根据目标设计虚拟变量,写出模型。考察一种群体异质。完整考察如何设计,如何运用到模型中。)注意事项:1、模型设计时一定要有截距项,虚拟变量引入原则一定要满足m-1原则。m为互斥类型的定性因素。2、要掌握虚拟变量引入模型的三种方法,即加法模型、乘法模型和既加又乘模型。1、举例说明如何引进加法模式和乘法模式建立虚拟变量模型。答案:设Y为个人消费支出;X表示可支配收入,定义如果设定模型为3此时模型仅影响截距项,差异表现为截距项的和,因此也称为加法模型。如果设定模型为此时模型不仅影响截距项,而且还影响斜率项。差异表现为截距和斜率的双重变化,因此也称为乘法模型。2、考虑下面的模型:其中,Y表示大学教师的年薪收入,X表示工龄。为了研究大学教师的年薪是否受到性别(男、女)、学历(本科、硕士、博士)的影响。按照下面的方式引入虚拟变量:3、考虑下面的模型:其中,Y表示大学教师的年薪收入,X表示工龄。为了研究大学教师的年薪是否受到性别、学历的影响。按照下面的方式引入虚拟变量:(10分)1.基准类是什么?2.解释各系数所代表的含义,并预期各系数的符号。3.若B4B3,你得出什么结论?答案:1.基准类是本科学历的女教师。2.B0表示刚参加工作的本科学历女教师的收入,所以B0的符号为正。B1表示在其他条件不变时,工龄变化一个单位所引起的收入的变化,所以B1的符号为正。4B2表示男教师与女教师的工资差异,所以B2的符号为正。B3表示硕士学历与本科学历对工资收入的影响,所以B3的符号为正。B4表示博士学历与本科学历对工资收入的影响,所以B4的符号为正。3.若B4B3,说明博士学历的大学教师比硕士学历的大学教师收入要高。4、性别因素可能对年薪和工龄之间的关系产生影响。试问这种影响可能有几种形式,并设定出相应的计量经济模型。性别因素可能对年薪和工龄之间的关系的影响有三种方式。第一种,性别只影响职工的初始年薪,设定模型为:5、考虑下面的模型:其中,Y——MBA毕业生收入,X——工龄。所有毕业生均来自清华大学,东北财经大学,沈阳工业大学。(1)基准类是什么?基准类是东北财经大学MBA毕业生。你预期各系数的符号如何?预期B1的符号为正;B2的符号为正;B3的符号为负。(2)如何解释截距B2B3?截距B2反应了清华大学MBA毕业生相对于东北财经大学MBA毕业生收入的差别;截距B3反应了沈阳工业大学MBA毕业生相对于东北财经大学MBA毕业生收入的差别。)(3)若B2B3,你得出什么结论?(4)如果B2B3,我们可以判断清华大学MBA毕业生的收入平均高于沈阳工业大学MBA毕业生的收入。三、异方差问题(25分)模型,如果出现,对于不同的样本点,随机扰动项的方差不再是常数,而且5互不相同,则认为出现了异方差。1、异方差的三大后果:一是最小二乘估计不再是有效估计量;二是相关参数的t检验、模型F检验失效;三是估计量的方差是有偏的,参数或因变量预测的置信区间的估计精度下降(甚至这种区间估计是失效的)。2、异方差的检验识别:White检验的具体步骤如下。以二元回归模型为例,yt=0+1xt1+2xt2+ut(1)①首先对上式进行OLS回归,求残差tuˆ。②做如下辅助回归式,(包括截距项、一次项、平方项、交叉项)2ˆtu=0+1xt1+2xt2+3xt12+4xt22+5xt1xt2+vt(2)即用2ˆtu对原回归式(1)中的各解释变量、解释变量的平方项、交叉积项进行OLS回归。求辅助回归式(2)的可决系数R2。③White检验的零假设和备择假设是H0:(1)式中的ut不存在异方差,H1:(1)式中的ut存在异方差④在不存在异方差假设条件下构造LM统计量或F统计量LM=nR22(5)或F=/5R)6/()R-(122___n~F(5,n-6)其中n表示样本容量,R2是辅助回归式(2)的OLS估计式的可决系数。自由度5表示辅助回归式(2)中解释变量项数(注意,不计算常数项),n-6是样本量减参数个数(因此可以扩展到K个解释变量的情形)。nR2属于LM统计量。⑤判别规则是若nR22(5),接受H0(ut具有同方差)若nR22(5),拒绝H0(ut具有异方差)或FF(5,n-6),接受H0(ut具有同方差)反之拒绝3、异方差的消除(WLS:加权最小二乘估计)6关键在于权重的选择,我们考的是采用残差作为权重,即采用(1)式中估计的1/|tuˆ|为权重,将残差的绝对值除(1)式的左右两边,然后对转换后的(1)式进行OLS。1、什么是异方差性?举例说明经济现象中的异方差性。1)模型,如果出现,对于不同的样本点,随机扰动项的方差不再是常数,而且互不相同,则认为出现了异方差。2)在现实经济中,异方差性经常出现,尤其是采用截面数据作样本的计量经济学问题。例如:工业企业的研究与发展费用支出同企业的销售和利润之间关系的函数模型;服装需求量与季节、收入之间关系的函数模型;个人储蓄与个人可支配收入之间关系的函数模型等。检验异方差的主要思路就是检验随机扰动项的方差与解释变量观察值的某种函数形式之间是否存在相关性。2、下面是一个回归模型的检验结果。WhiteHeteroskedasticityTest:F-statistic19.41659Probability0.000022Obs*R-squared16.01986Probability0.006788TestEquation:DependentVariable:RESID^2Method:LeastSquaresDate:05/31/06Time:10:54Sample:118Includedobservations:18VariableCoefficientStd.Errort-StatisticProb.C693735.72652973.0.2614940.7981X1135.0044107.72441.2532390.2340X1^2-0.0027080.000790-3.4270090.0050X1*X20.0501100.0207452.4154670.0326X2-1965.7121297.758-1.5146980.1557X2^2-0.1163870.146629-0.7937520.4428R-squared0.889992Meandependentvar6167356.7AdjustedR-squared0.844155S.D.dependentvar13040908S.E.ofregression5148181.Akaikeinfocriterion34.00739Sumsquaredresid3.18E+14Schwarzcriterion34.30418Loglikelihood-300.0665F-statistic19.41659Durbin-Watsonstat2.12

1 / 16
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功