24.1圆的基础习题(附答案解析)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

完美WORD格式专业整理知识分享圆的基本概念一.选择题(共1小题)1.(2013•舟山)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.2二.解答题(共23小题)2.(2007•双柏县)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.3.(2007•佛山)如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.4.(1998•大连)如图,AB、CD是⊙O的弦,M、N分别为AB、CD的中点,且∠AMN=∠CNM.求证:AB=CD.5.如图,过圆O内一点M的最长的弦长为10,最短的弦长为8,求OM的长.6.(1997•安徽)已知AB是⊙O的弦,P是AB上一点,AB=10,PA=4,OP=5,求⊙O的半径.7.(2010•黔东南州)如图,水平放置的圈柱形水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留π)8.安定广场南侧地上有两个大理石球,喜爱数学的小明想测量球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm,请你算出这个大理石球的半径.9.(1999•武汉)已知:如图,OA、OB、OC是⊙O的三条半径,∠AOC=∠BOC,M、N分别是OA、OB的中点.求证:MC=NC.10.已知:如图,∠PAC=30°,在射线AC上顺次截取AD=2cm,DB=6cm,以DB为直径作⊙O交射线AP于E、F两点,又OM⊥AP于M.求OM及EF的长.11.(2013•温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.12.(2013•长宁区二模)如图,已知等腰直角△ABC中,∠BAC=90°,圆心O在△ABC内部,且⊙O经过B、C两点,若BC=8,AO=1,求⊙O的半径.13.(2011•潘集区模拟)如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C,若AB是⊙O的直径,D是BC的中点.试判断AB、AC之间的大小关系,并给出证明.14.(2008•沈阳)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=52°,求∠DEB的度数;(2)若OC=3,AB=8,求⊙O直径的长.15.(2006•佛山)已知:如图,两个等圆⊙O1和⊙O2相交于A,B两点,经过点A的直线与两圆分别交于点C,点D,经过点B的直线与两圆分别交于点E,点F.若CD∥EF,求证:(1)四边形EFDC是平行四边形;(2).16.(1999•青岛)如图,⊙O1和⊙O2都经过A,B两点,经过点A的直线CD交⊙O1于C,交⊙O2于D,经过点B的直线EF交⊙O1于E,交⊙O2于F.求证:CE∥DF.17.如图①,点A、B、C在⊙O上,连接OC、OB.(1)求证:∠A=∠B+∠C.(2)若点A在如图②所示的位置,以上结论仍成立吗?说明理由.18.(2013•闸北区二模)已知:如图,在⊙O中,M是弧AB的中点,过点M的弦MN交弦AB于点C,设⊙O半径为4cm,MN=cm,OH⊥MN,垂足是点H.(1)求OH的长度;(2)求∠ACM的度数.19.(2013•张家界)如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.20.(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.21.(2013•钦州)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.22.(2013•南宁)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.23.(2013•黑龙江)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)24.(2011•德宏州)如图,在平面直角坐标系中,每个小正方形的边长都为1个单位长度.(1)画出△ABC关于点O的中心对称图形△A1B1C1;(2)画出将△A1B1C1向右平移5个单位长度得到的△A2B2C2;(3)画出△A1B1C1关于x轴对称的图形△A3B3C3.2013年10月dous的初中数学组卷参考答案与试题解析一.选择题(共1小题)1.(2013•舟山)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.2考点:垂径定理;勾股定理;圆周角定理.2987714专题:压轴题;探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解答:解:∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+(r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二.解答题(共23小题)2.(2007•双柏县)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.考点:垂径定理;勾股定理.2987714专题:几何综合题;压轴题.分析:(1)AB是⊙O的直径,则AB所对的圆周角是直角,BC是弦,OD⊥BC于E,则满足垂径定理的结论;(2)OD⊥BC,则BE=CE=BC=4,在Rt△OEB中,由勾股定理就可以得到关于半径的方程,可以求出半径.解答:解:(1)不同类型的正确结论有:①BE=CE;②弧BD=弧DC;③∠BED=90°;④∠BOD=∠A;⑤AC∥OD;⑥AC⊥BC;⑦OE2+BE2=OB2;⑧S△ABC=BC•OE;⑨△BOD是等腰三角形;⑩△BOE∽△BAC…说明:1、每写对一条给1分,但最多给5分;2、结论与辅助线有关且正确的,也相应给分.(2)∵OD⊥BC,∴BE=CE=BC=4,设⊙O的半径为R,则OE=OD﹣DE=R﹣2,(7分)在Rt△OEB中,由勾股定理得:OE2+BE2=OB2,即(R﹣2)2+42=R2,解得R=5,∴⊙O的半径为5.(10分)点评:本题主要考查了垂径定理,求圆的弦,半径,弦心距的长问题可以转化为解直角三角形的问题.3.(2007•佛山)如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.考点:垂径定理;等腰三角形的性质;勾股定理.2987714专题:压轴题.分析:可通过构建直角三角形进行求解.连接OA,OC,那么OA⊥BC.在直角三角形ACD中,有AC,CD的值,AD就能求出了;在直角三角形ODC中,用半径表示出OD,OC,然后根据勾股定理就能求出半径了.解答:解:连接OA交BC于点D,连接OC,OB,∵AB=AC=13,∴=,∴∠AOB=∠AOC,∵OB=OC,∴AO⊥BC,CD=BC=12在Rt△ACD中,AC=13,CD=12所以AD=设⊙O的半径为r则在Rt△OCD中,OD=r﹣5,CD=12,OC=r所以(r﹣5)2+122=r2解得r=16.9.点评:本题主要考查了垂径定理和勾股定理的综合运用.4.(1998•大连)如图,AB、CD是⊙O的弦,M、N分别为AB、CD的中点,且∠AMN=∠CNM.求证:AB=CD.考点:垂径定理.2987714专题:证明题;压轴题.分析:连接OM,ON,OA,OC,先根据垂径定理得出AM=AB,CN=CD,再由∠AMN=∠CNM得出∠NMO=∠MNO,即OM=ON,再由OA=OC可知Rt△AOM≌Rt△CON,故AM=CN,由此即可得出结论.解答:证明:连接OM,ON,OA,OC,∵M、N分别为AB、CD的中点,∴OM⊥AB,ON⊥CD,∴AM=AB,CN=CD,∵∠AMN=∠CNM,∴∠NMO=∠MNO,即OM=ON,在Rt△AOM与Rt△CON中,∵,∴Rt△AOM≌Rt△CON(HL),∴AM=CN,∴AB=CD.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.如图,过圆O内一点M的最长的弦长为10,最短的弦长为8,求OM的长.考点:垂径定理;勾股定理.2987714分析:过M的最长弦应该是⊙O的直径,最短弦应该是和OM垂直的弦(设此弦为CD);可连接OM、OC,根据垂径定理可得出CM的长,再根据勾股定理即可求出OM的值.解答:解:连接OM交圆O于点B,延长MO交圆于点A,过点M作弦CD⊥AB,连接OC∵过圆O内一点M的最长的弦长为10,最短的弦长为8,(2分)∴直径AB=10,CD=8∵CD⊥AB∴CM=MD=(4分)在Rt△OMC中,OC=;∴OM=.(6分)点评:此题考查的是垂径定理及勾股定理的应用,解答此题的关键是理解过M点的最长弦和最短弦.6.(1997•安徽)已知AB是⊙O的弦,P是AB上一点,AB=10,PA=4,OP=5,求⊙O的半径.考点:垂径定理;勾股定理.2987714分析:过O作OE⊥AB,垂足为E,连接OA,先求出PE的长,利用勾股定理求出OE,在Rt△AOE中,利用勾股定理即可求出OA的长.解答:解:过O作OE⊥AB,垂足为E,连接OA,∵AB=10,PA=4,∴AE=AB=5,PE=AE﹣PA=5﹣4=1,在Rt△POE中,OE===2,在Rt△AOE中,OA===7.点评:本题主要考查垂径定理和勾股定理的应用.作辅助线构造直角三角形是解题的突破口.7.(2010•黔东南州)如图,水平放置的圈柱形水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积(结果保留π)考点:垂径定理的应用.2987714专题:探究型.分析:连接OA、OB,过O作OD⊥AB,交AB于点E,由于水面的高为3m可求出OE的长,在Rt△AOE中利用三角函数的定义可求出∠AOE的度数,由垂径定理可知,∠AOE=∠BOE,进而可求出∠AOB的度数,根据扇形及三角形的面积可求出弓形的面积.解答:解:连接OA、OB,过O作OD⊥AB,交AB于点E,∵OD=0.6m,DE=0.3m,∴OE=OD

1 / 26
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功