1、如图11-3所示,在△ABC中,∠C=900,AC=BC=4,现将△ABC沿CB方向平移到△A1B1C1的位置。①若平移的距离为3,则△ABC与△A1B1C1重叠部分的面积为多少?②若平移的距离为x(0≤x≤4),△ABC与△A1B1C1重叠部分的面积为y,则y与x之间的关系是什么?2、把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).在上述旋转过程中,BH与CH有怎样的数量关系?四边形BHGK的面积有何变化?证明你发现的结论;3、已知:如图,等边三角形ABC的边长为6,点D,E分别在边AB,AC上,且AD=AE=2。若点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒。当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O。(1)设△EGA的面积为S,写出S与t的函数关系式;(2)当t为何值时,AB⊥GH;(3)请你证明△GFH的面积为定值;(4)当t为何值时,点F和点C是线段BH的三等分点。4、PEDABCFPEDABCFEDACBF如图,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=900,点B、E、F,按逆时针排列),点P为DE的中点,连PC,PF(1)如图①,点E在BC上,则线段PC、PF的数量关系为____,位置关系为____(不证明).(2)如图②,将△BEF绕点B顺时针旋转a(Oa450),则线段PC,PF有何数量关系和位置关系?请写出你的结论,并证明.(3)如图③,△AEF为等腰直角三角形,且∠AEF=90°,△AEF绕点A逆时针旋转过程中,能使点F落在BC上,且AB平分EF,直接写出AE的值是________AA1DCC1BB1AG(O)ECBF①②AG(O)ECBFHKAGEODBFCH