位置与坐标培优训练一.选择题(共10小题)1.如图1,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2B.3C.4D.52.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:(1、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2、g(a,b)=(b,a).如:g(1,3)=(3,1);(3、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),那么f(h(5,﹣3))等于()A.(﹣5,﹣3)B.(5,3)C.(5,﹣3)D.(﹣5,3)3.如图2,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(,﹣)B.(﹣,)C.(2,﹣2)D.(,﹣)4.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是()A.2B.1C.4D.35.如图3,A(,1),B(1,).将△AOB绕点O旋转150°得到△A′OB′,则此时点A的对应点A′的坐标为()A.(﹣,﹣1)B.(﹣2,0)C.(﹣1,﹣)或(﹣2,0)D.(﹣,﹣1)或(﹣2,0)6.若以A(﹣0.5,0)、B(2,0)、C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图4,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1B.m﹣2n=1C.2n﹣m=1D.n﹣2m=18.如图5.在直角坐标系中,矩形ABCD的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.9.在一次“寻宝”人找到了如图6所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()A.(1,0)B.(5,4)C.(1,0)或(5,4)D.(0,1)或(4,5)10.如图7,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为()A.(5,2)B.(2,5)C.(2,1)D.(1,2)二.填空题(共8小题)11.点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得|PA﹣PB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OP•OQ=_________.13.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为_________.14.如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=_________时,AC+BC的值最小.15、如右图,将边长为1的正三角形OAP沿x轴正方向连续翻转2008次,点依次落在点1232008PPPP,,,的位置,则点的横坐标为16、如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2017次,点P依次落在点P1,P2,P3,P4,…,P2017的位置,则P2017的横坐标x2017=.17.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为_________.三.解答题(共3小题)19.已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.20.阅读材料:例:说明代数式的几何意义,并求它的最小值.解:=+,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则可以看成点P与点A(0,1)的距离,可以看成点P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值.设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而点A′、B间的直线段距离最短,所以PA′+PB的最小值为线段A′B的长度.为此,构造直角三角形A′CB,因为A′C=3,CB=3,所以A′B=3,即原式的最小值为3.根据以上阅读材料,解答下列问题:(1)代数式的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B_________的距离之和.(填写点B的坐标)(2)代数式的最小值为_________.