火羽流理论火羽流理论第三讲理想羽流之2第三讲理想羽流之-GaussianPlumes陆守香:sxlu@ustceducn陆守香:sxlu@ustc.edu.cn办公地点:力学一楼214室0551-3603141,13956966718FarFieldGaussianPlumes3.1引言-羽流特征参数3.2Gaussian羽流回顾-弱羽流假设回顾弱羽流假设Assumethesimplecaseofapointsourceofheatatheightz=0ofheatatheightz=0.Theenergyisconsideredtobetotallytransportedintheplume,andnoradiativeheatisemittedfromthepointsource.TheforcedrivingthesystemcanthereforeTheforcedrivingthesystemcanthereforebeassumedtoariseduetothedensitydifferenceofthehotairabovethepointandthecoldsurroundingair.FurtherassumethattheflowprofileacrossFurtherassumethattheflowprofileacrossthesectionoftheplume,atanyheight,isaso-calledtophatprofile.Therefore,theupwardvelocityisassumedtobeconstantacrossthewidthoftheplumeandzeropoutsideit.Theplumetemperatureissimilarlyassumedtobeconstantacrossanysectionoftheplume.Assumethatthereisarelationshipbetweentheupwardvelocityintheplumeandthehorizontalentrainmentvelocityintotheplume,v,suchthatv=α·u,whereαiscalledtheentrainmentwhereαiscalledtheentrainmentcoefficient.3.1引言-羽流特征参数引言羽流特征参数Rouse,Yih&Humphries,Gravitationalconvectionfromaboundarysource,Tellus,1952,4:202~2102exp()urubz⎡⎤⎛⎞=−⎢⎥⎜⎟⎢⎥⎝⎠⎣⎦2()expmubzTTrβ∞⎢⎥⎝⎠⎣⎦⎡⎤⎛⎞−=−⎢⎥⎜⎟exp()mTTbzβ∞⎢⎥⎜⎟−⎢⎥⎝⎠⎣⎦,1()rbzηβ=具有相似解3.1引言-羽流特征参数引言羽流特征参数为了无量纲化,需要引入特征参数在点源羽流中没有源直径速度等参数如何办?在点源羽流中,没有源直径、速度等参数,如何办?假设存在一个长度参数Zc和一个速度参数uc,进行无量纲化回顾-2.2基本方程回顾基本方程2QubcTπρ=Δ&pcTπρ∞Δ2Q&2pQubcTπρ∞=Δ量纲相等量纲相等并定义2Q&Qu=&2ccpQuzcTρ∞∞=2ccpuzcTρ∞∞=回顾-2.4动量方程和浮力方程回顾动量方程和浮力方程由质量流率方程由质量流率方程由浮力方程1/51/2Q⎛⎞⎜⎟&量纲相等并定义1/2cpQugcTgρ∞∞=⎜⎟⎜⎟⎝⎠2/5Q⎛⎞⎜⎟&22cccuzgz=2cQuT=&cpQzcTgρ∞∞⎛⎞=⎜⎟⎜⎟⎝⎠2ccpzcTρ∞∞2Qgz⎛⎞=⎜⎟⎜⎟&⎝⎠2ccpgzzcTρ∞∞=⎜⎟⎜⎟⎝⎠2/5Q⎛⎞&cpQzcTgρ∞∞⎛⎞=⎜⎟⎜⎟⎝⎠pgρ∞∞⎝⎠特征长度zc是一个非常重要的参数,与火源直径一样,决定了大涡旋结构的尺寸和火焰的高度。所以通常把无量纲火焰高度表示为所以,通常把无量纲火焰高度表示为fczzfDD⎛⎞=⎜⎟⎝⎠DD⎜⎟⎝⎠3.2SolutionforGaussianprofilep假设1一个点火源模型。因此,基本尺寸D变为0。2使用Bousinnesq假设,除了浮力项,密度和其它流体性质为常数2使用Bousinnesq假设,除了浮力项,密度和其它流体性质为常数3u/um和(T-T0)/(Tm-T0)都用高斯分布2⎡⎤2exp()murubz⎡⎤⎛⎞=−⎢⎥⎜⎟⎢⎥⎝⎠⎣⎦2exp()TTrTTbzβ∞⎣⎦⎡⎤⎛⎞−=−⎢⎥⎜⎟−⎢⎥⎝⎠⎣⎦()mTTbz∞⎢⎥⎝⎠⎣⎦3.2SolutionforGaussianprofilep假设假设4、空气卷吸基于恒定的空气卷吸常数α,它是空气卷吸量与轴向速度的比值。另外,可以用动量的比值来表示空气卷吸系数,这需要引入(ρ/ρ0)1/2。4、能量释放速率被假定在燃烧区域均一分布,且直接由空气卷吸,率中的量ΔHc/sn决定,其中ΔHc是燃烧热,s是化学当量的空气燃料比,n是卷吸的空气与燃烧消耗的空气的比值。n是独立的流体动力学因子,为羽流混合的特征量。在我们的计算中ΔH/s被取为2.91kJ/g因子,为羽流混合的特征量。在我们的计算中ΔHc/s被取为2.91kJ/g,与甲烷一致。5、火焰辐射被视为恒定的分数Xr。6对于浮力控制的羽流燃料供应的质量动量和能量流率被认6、对于浮力控制的羽流,燃料供应的质量、动量和能量流率被认为很小,可以忽略。7、羽流完全是湍流。回顾-弱羽流假设回顾弱羽流假设Assumethesimplecaseofapointsourceofheatatheightz=0ofheatatheightz=0.Theenergyisconsideredtobetotallytransportedintheplume,andnoradiativeheatisemittedfromthepointsource.TheforcedrivingthesystemcanthereforeTheforcedrivingthesystemcanthereforebeassumedtoariseduetothedensitydifferenceofthehotairabovethepointandthecoldsurroundingair.FurtherassumethattheflowprofileacrossFurtherassumethattheflowprofileacrossthesectionoftheplume,atanyheight,isaso-calledtophatprofile.Therefore,theupwardvelocityisassumedtobeconstantacrossthewidthoftheplumeandzeropoutsideit.Theplumetemperatureissimilarlyassumedtobeconstantacrossanysectionoftheplume.Assumethatthereisarelationshipbetweentheupwardvelocityintheplumeandthehorizontalentrainmentvelocityintotheplume,v,suchthatv=α·u,whereαiscalledtheentrainmentwhereαiscalledtheentrainmentcoefficient.3.2SolutionforGaussianprofilep2⎡⎤⎛⎞2exp()murubz⎡⎤⎛⎞=−⎢⎥⎜⎟⎢⎥⎝⎠⎣⎦2exp()mTTrTTbzβ∞∞⎡⎤⎛⎞−=−⎢⎥⎜⎟−⎢⎥⎝⎠⎣⎦定义无量纲参数()/mTTT∞∞Φ=−//mccUuuBbz==/czzζ=3.2SolutionforGaussianprofilep2⎡⎤⎛⎞积分羽流方程并令2exp()murubz⎡⎤⎛⎞=−⎢⎥⎜⎟⎢⎥⎝⎠⎣⎦PTCζ=Φ积分羽流方程,并令2exp()mTTrTTbzβ∞∞⎡⎤⎛⎞−=−⎢⎥⎜⎟−⎢⎥⎝⎠⎣⎦mCBζnuUCζ=TCζΦ定义无量纲参数mlCBζ=()/mTTT∞∞Φ=−//mccUuuBbz==1.Morton,B.R.,Taylor,G.I.,andTurner,J.S.,Proc.OftheRoyalSoc.ofLondon,Ser.A234:1–23(1956).2.Lee,S.L.andEmmons,H.W.,J.ofFluidMech./czzζ=,,,f11:353–368(1961).3.Steward,F.R.,Combust.Flame8:171–178(1964).3.2SolutionforGaussianprofilep()/TTTΦ=0.098α=()//mmcTTTUuu∞∞Φ=−=2/30.91310.58(1)TrCβχ==−//ccBbzzzζ==1/34.17(1)0.118urlCCχ=−=5/3TCζ−Φ=21.64Uζ=Φ1/3TuCUCBCζζζ−Φ=2/32/32/31/34/3225(1)(1)324TrCβχπβα−⎡⎤+⎛⎞=−⎢⎥⎜⎟⎝⎠⎢⎥⎣⎦23lBCUζβ==β⎝⎠⎢⎥⎣⎦1/32251(1)Cβαχ−⎡⎤⎛⎞+⎛⎞=−⎢⎥⎜⎟⎜⎟6lCα=2βζΦ(1)24urCαχπβ⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦5l3.2SolutionforGaussianprofilep23U0.098α=32Uβζ=Φ2/30.91310.58(1)TrCβχ==−1/34.17(1)0.118urlCCχ=−=2/mcugz21.64Uζ=Φ22()//mcTTTzzu∞∞−2()/3mmuFrgTTTz∞∞==−232rFβ=3.2SolutionforGaussianprofilep3.2SolutionforGaussianprofilep