人工智能与未来摘要:5盘人机围棋大战,让“人工智能”这个时髦词汇飞入寻常百姓家,伴随这股热潮,国内互联网公司种种基于人工智能技术的创新应用也不断涌现。最近这段时间,从智能客服、投资指导再到人脸识别,多项与人工智能技术紧密联系的新应用与新服务先后浮出水面。什么是人工智能人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。其实,人工智能技术本身的火热已经持续了一段相当长的时间。一项不完全统计显示,2015年,我国投资人工智能的机构数量已经高达48家,投资额为14.2亿元,同比增长分别为71.4%、75.7%。预计2020年中国人工智能市场规模将达到91亿元。不但以百度、腾讯、阿里巴巴为代表的互联网巨头已开始在人工智能上发力,上百家创业企业也开始渗透并构架起产业基础层、技术层、应用层,形成产业链模型。目前,中国人工智能领域已覆盖了工业机器人、服务机器人、智能硬件等硬件产品层,智能客服、商业智能等软件与服务层,视觉识别、机器学习等技术层,数据资源、计算平台等基础层。但人工智能到底能做什么,又将怎样改变我们的生活?解放枯燥劳动的“双手”“利用人工智能技术,每一通电话,可以节约客服人员225秒的时间,以一个客服一天接听200通电话计算,人工智能可以为他节约3个小时。”网易七鱼产品总监段毓铮这样告诉记者。4月12日,网易正式上线了自己的云客服产品“七鱼”,其中最重要的卖点之一就是取代传统客服的重复琐碎的枯燥劳动。“网易七鱼智能客服机器人可以同时响应百万级客户请求,大量的常见问题会被智能机器人准确解答,节省超过80%人工客服成本。”段毓铮如是说。通过自我学习,完成对语音、视频、图片等非结构化数据的识别,从而“将鲜活的人从低效工作中解放出来”,的确是现阶段人工智能最主要的应用。人工智能与机电一体化系统的统一近几十年来,人工智能得到了长足的发展,譬如,IBM公司制造的深蓝计算机运用人工智能于1997年5月,战胜了国际象棋冠军卡斯帕洛夫。人工智能用于机电一体化是机电一体化发展的方向之一。这种智能主要通过控制技术加以设计和实现,即由机电一体化系统中的控制系统来具体实现。专家系统、模糊逻辑、神经网络控制、学习控制和分层递阶是目前人工智能研究主要的几个领域,它们各自发展,又相互渗透,走向结合。其中,前三个领域是目前机电一体系统实现智能化的较成熟的领域。一,自从第一个专家系统于1968年问世以来,经过30多年的发展,专家系统已经成为人工智能应用最活跃的领域。已经从最初的应用于医疗、科技等领域,向财政、金融、保险、商业和法律方向扩展,下面就与机电一体化有关的应用予以探讨。(1)在装配制造业的应用:产品的生产,总是用零件来构造的,将不同的零件一起装配成一种新产品,叫做配里任务。专家系统应用于装配制造方面可以取得可观的经济效益。比如,DEC公司的专家系统XCON,是应用于计算机配置的第一个专家系统,现在每年为DEC公司盈利1。5亿美元(2)在设备故障诊断中的应用:专家系统用于设备故障诊断,特别是针对大型的结构、复杂的故障诊断,可以尽快找到故障,大大缩短检修时间,有很多成功的例子,比如美国西屋电气公司研制的GEN一AID专家系统,已经成功地应用于诊断汽轮发动机的故障。IBM公司也曾经为其IBMATPC机配备了一个专家系统,用来精确定位系统故障。(3)在控制方面的应用:专家系统可以在机电一体化设备控制方面发挥作用,在伺服控制、数控机床、加工中心以及其它控制领域,已取得了进展。在这方面成功的例子如AT&T公司为控制机械手,研制出在单个芯片上实现的专家系统。最早的芯片包括16条规则的ROM,控制器以及处理数据与规则的推理机。采用2。5um线宽的CMOS工作,最初只使用了芯片面积的四分之一,改用1。5um线宽后可容纳256条规则,建立规则时采用模糊逻辑,执行速度可达到80000LISP,比常规专家系统快1000倍。尽管大型专家系统的造价是很昂贵的,但其经济效益大,通常一年之内可收回成本。因此,专家系统在机电一体化中的应用前景十分广阔。二,属于模糊概念的全体对象称为模糊集合。例如,说“XX是青年人。”这个青年就是模糊集合。基于模糊集合基础之上的逻辑与控制称为模糊逻辑与控制。它可用较少的代价传递足够的信息,并能对复杂事物做出高效率的判断和处理。模糊控制对某些参数变化不敏感。由于模糊控制器的决定往往要根据十几条甚至数十条规则才能做出,如果由于传感器或元器件出故障而导致某些规则失误,其它规则可起补偿作用,从而使输出保持连续平滑。所以,模糊控制较适用于一些要求鲁棒性能好的机电一体化系统中。三,人工神经网络能模拟人类大量脑细胞的高度连接,当有输人信号将神经元激活时,经过神经回路产生输出。神经网络具有学习能力和联想记忆,它经过学习能在输人信号后产生预期的输出。如果某一信息回路没学习过,它也能得出合理的输出。人工神经网络在机电一体化系统应用中有明显进展,与专家系统、模糊逻辑结合起来是重点的发展方向。用于机电一体化系统中的现场总线LONWORKS,其核心技术就是采用神经元芯片。这种芯片内部装有3个微处理器:MAC处理器完成介质访问控制;网络处理器完成ISO/OSI参考模型的3一6层网络协议;应用处理器完成用户现场控制应用。它们之间通过公用存储器传递数据。该神经元芯片还具有多种I/O和时间计算器等。一个小小的神经元芯片,不仅具有强大的通信功能,还集控制和数据于一体。在某些情况下,此芯片再配以其它一些器件,就可承担集散控制系统中一个独立控制单元的任务。总之,专家系统、模糊逻辑与人工神经网络三者,不仅各自发挥其独特的作用还日益走上综合集成形成全新的技术,进一步提高机电一体化系统的智能化水平,并不断扩展其应用水平。人工智能的发展历程人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现到现在,已经出现了许多AI程序,并且它们也影响到了其它技术的发展。1941年的一项发明使信息存储和处理的各个方面都发生了革命。这项同时在美国和德国出现的发明就是电子计算机。第一台计算机要占用几间装空调的大房间,对程序员来说是场恶梦:仅仅为运行一个程序就要设置成千的线路。1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机理论的发展产生了计算机科学,并最终促使了人工智能的出现。计算机这个用电子方式处理数据的发明,为人工智能的可能实现提供了一种媒介。虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人工智能与机器之间的联系。1956年,被认为是人工智能之父的JohnMcCarthy组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一个月的讨论。他请他们到Vermont参加Dartmouth人工智能夏季研究会。从那时起,这个领域被命名为人工智能。虽然Dartmouth学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础。人们开始感受到计算机和人工智能技术的影响。计算机技术不再只属于实验室中的一小群研究人员。个人电脑和众多技术杂志使计算机技术展现在人们面前。其它一些AI领域也在80年代进入市场。其中一项就是机器视觉。Minsky和Marr的成果现在用到了生产线上的相机和计算机中,进行质量控制。尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同。到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元。但80年代对AI工业来说也不全是好年景。86-87年对AI系统的需求下降,业界损失了近5亿美元。尽管经历了这些受挫的事件,AI仍在慢慢恢复发展。新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的条件作出决策;还有神经网络,被视为实现人工智能的可能途径。总之,80年代AI被引入了市场,并显示出实用价值。可以确信,它将是通向21世纪之匙。人工智能在生活生产中的作用人工智能借助于通迅技术将网络的触手伸向世界的角落,向人们展示了精彩的世界。人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。在另外广阔领域里,人工智能借助于机电光声技术,为社会提供了电子排版系统、家庭影院、音乐喷泉、CT检查和机器人等等,给人们带来了一片新气象。人工智能的发展趋势不同研究分支的学者不断对了人工智能领域可能的突破点进行探讨,我们大致可以从下面六个方面了解人工智能领域进一步深入研究的发展方向。(1)面向交互的程序设计与社会构造:开放的信息系统是人工智能乃至整个计算机领域研究的重要议题之一。所谓开放的信息系统是指由异构的、分布的、动态的、大规模的、自主的成分构成的系统。对这类系统的研究要求将人工智能与传统技术相结合,以获得更大的可扩展性与适应性。(2)并发约束模型,智能计算的基础:我们需要一种混合型的并发程序设计语言,这种语言既能描述系统的环境,又能描述系统所要执行的任务;既可实现含连续时间参数的模型,又能实现含离散操作的模型。以这种混合型程序语言为基础可以建立一类可复合的模型,以刻画同时含有不同类型时间参数及并发约束的更复杂的问题类。(3)一种基于DAI的新型软件设计风范:错误永远存在于复杂系统中,要求程序的无错性可能导致对系统复杂性的制约或增加其它开销,因此无错误的代码未必一定是好的。应该引入一种全新的软件设计风范,以这种方法设计的软件系统应是由多个能交互、带有验证内核的模块组成的开放式结构。(4)知识表示:在知识表示领域中,今后十年内最具挑战性的研究问题是动态知识系统的刻画及关于Agent程序设计的理论与实现的研究。(5)建立与理解复杂的自适应系统:下一个十年人工智能研究应着重于对未必能符号化、信息未必完全的复杂的自适应系统的研究,其中最关键的是如何理解与建立这样的系统。建立这样的系统需要发展一些新的理论与技术。首先必须发展能理解与处理上下文的技术,使所建立的系统能在不同的上下文情境下合理地处理各类问题;其次应发展多路学习机制,使系统能从复杂的变化的环境中同时学到多种技能(如机器人足球运动员就需要有这样的功能);另外还应探讨系统的可自动进化机制,使系统能从简单的被动式的系统逐步进化为复杂的具有自适应能力的系统。(6)语言技术与界面:目前关于语言的研究尚未突破语义障碍,现在还看不出在解决自然语言中含糊暧昧的成份方面可能会取得多大的进展,也很难想象在近期内能实现对任意输入均可产生高质量译文的机器翻译系统或非常理想的篇章理解系统,我们所能看到的是一些有一定限制的但与人类生活密切相关的语言处理技术的发展。随着语言技术产品市场的不断壮大,语言技术也会得到更快的发展。结语人工智能的研究一旦取得突破性进展,将会对信息时代产生重大影响,对人类文明产生重大影响。科学发展到今天,一方面是高度分化,学科在不断细分,新学科、新领域不断产生;另一方面是学科的高度融合,更多地呈现交叉和综合的趋势,新兴学科和交叉学科不断涌现。大学科交叉的这种普遍趋势,在人工智能学科方面表现尤其突出。由脑科学、认知科学、人工智能等共同研究智能的本质和机理,形成交叉学科智能科学。学科交叉将催生更多的研究成果,对于人工智能学科整体而言,要有所突破,需要多个学科合作协同,在交叉学科研究中实现创新。未来,智能虚拟客服和人脸识别技术都是人工智能服务应用的热门领域,“除此之外,还有智能硬件、机器人上的应用,通过人工智能实现交互方式的转变,从目前的由人指挥向自主阶段发展;在虚拟场景服务领域,可以助视