九年级下册第5章圆5.1垂径定理测试题(含答案)一.选择题(共8小题)1.(2015•广元)如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()A.CE=DEB.AE=OEC.=D.△OCE≌△ODE(1题图)(2题图)(3题图)(4题图)2.(2015•遂宁)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cmB.4cmC.5cmD.6cm3.(2015•玉林)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=ABB.∠C=∠BODC.∠C=∠BD.∠A=∠BOD4.(2015•滕州市校级四模)当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm)那么该圆的半径为()A.8cmB.9cmC.cmD.10cm5.(2014秋•乐清市校级月考)一条排水管的截面如图所示,已知该排水管的半径OA=10,水面宽AB=16,则排水管内水的最大深度CD的长为()A.8B.6C.5D.4(5题图)(6题图)(7题图)6.(2014•温州一模)温州是著名水乡,河流遍布整个城市.某河流上建有一座美丽的石拱桥(如图).已知桥拱半径OC为5m,水面宽AB为m,则石拱桥的桥顶到水面的距离CD为()A.4mB.7mC.5+mD.6m7.(2015•宜州市二模)如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么△ABC的面积为()A.3B.C.4D.8.(2015•武汉模拟)如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cmB.6cmC.7cmD.8cm(8题图)(9题图)(10题图)(11)二.填空题(共6小题)9.(2015•黔西南州)如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.10.(2015•义乌市)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于度.11.(2015•南通)如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.12.(2015•东营)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.(12题图)(13题图)(14题图)13.(2015•六盘水)赵洲桥是我国建筑史上的一大创举,它距今约1400年,历经无数次洪水冲击和8次地震却安然无恙.如图,若桥跨度AB约为40米,主拱高CD约10米,则桥弧AB所在圆的半径R=米.14.(2015•得荣县三模)如图将半径为4米的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为米.三.解答题(共5小题)15.(2015•江岸区校级模拟)如图,两个圆都以点O为圆心,大圆的弦AB交小圆于C、D两点.求证:AC=BD.16.(2015•东西湖区校级模拟)如图,水平放置的一个油管的截面半径为13cm,其中有油部分油面宽AB为24cm,求截面上有油部分油面高CD(单位:cm).17.(2014•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.18.(2015•永州)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.19.(2015•绵阳模拟)如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.九年级下册第5章圆5.1垂径定理测试题参考答案一.选择题(共8小题)1.B.2.B.3.B4.C.5.D.6.D.7.B.8.B.二.填空题(共6小题)9..10.6011.812.0.813.2514.4三.解答题(共5小题)15.证明:作OH⊥AB于H,如图,则AH=BH,CH=DH,∴AH﹣CH=BH﹣DH,即AC=BD.(15题图)(16题图)(17题图)(18题图)16.解:如图;连接OA;根据垂径定理,得AC=BC=12cm;Rt△OAC中,OA=13cm,AC=12cm;根据勾股定理,得:OC==5cm;∴CD=OD﹣OC=8cm;∴油面高为8cm.17.解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.18.(1)证明:∵AD是直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.19.(1)证明:连接AC,如图∵直径AB垂直于弦CD于点E,∴,∴AC=AD,∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,∴AC=AD=CD.即:△ACD是等边三角形,∴∠FCD=30°,在Rt△COE中,,∴,∴点E为OB的中点;(2)解:在Rt△OCE中,AB=8,∴,又∵BE=OE,∴OE=2,∴,∴.