最小二乘法原理和曲线拟合

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

最小二乘法的基本原理和多项式拟合一最小二乘法的基本原理从整体上考虑近似函数同所给数据点(i=0,1,…,m)误差(i=0,1,…,m)(i=0,1,…,m)绝对值的最大值,即误差向量的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑2—范数的平方,因此在曲线拟合中常采用误差平方和来度量误差(i=0,1,…,m)的整体大小。数据拟合的具体作法是:对给定数据(i=0,1,…,m),在取定的函数类中,求,使误差(i=0,1,…,m)的平方和最小,即=从几何意义上讲,就是寻求与给定点(i=0,1,…,m)的距离平方和为最小的曲线(图6-1)。函数称为拟合函数或最小二乘解,求拟合函数的方法称为曲线拟合的最小二乘法。数类可有不同的选取方法.6—1二多项式拟合假设给定数据点(i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得(1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。显然为的多元函数,因此上述问题即为求的极值问题。由多元函数求极值的必要条件,得(2)即(3)(3)是关于的线性方程组,用矩阵表示为(4)式(3)或式(4)称为正规方程组或法方程组。可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。从式(4)中解出(k=0,1,…,n),从而可得多项式(5)可以证明,式(5)中的满足式(1),即为所求的拟合多项式。我们把称为最小二乘拟合多项式的平方误差,记作由式(2)可得(6)多项式拟合的一般方法可归纳为以下几步:(1)由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;(2)列表计算和;(3)写出正规方程组,求出;(4)写出拟合多项式。在实际应用中,或;当时所得的拟合多项式就是拉格朗日或牛顿插值多项式。例1测得铜导线在温度(℃)时的电阻如表6-1,求电阻R与温度T的近似函数关系。i0123456(℃)19.125.030.136.040.045.150.076.3077.879.2580.882.3583.985.1解画出散点图(图6-2),可见测得的数据接近一条直线,故取n=1,拟合函数为列表如下i019.176.30364.811457.330125.077.80625.001945.000230.179.25906.012385.425336.080.801296.002908.800440.082.351600.003294.000545.183.902034.013783.890650.085.102500.004255.000245.3565.59325.8320029.445正规方程组为解方程组得故得R与T的拟合直线为利用上述关系式,可以预测不同温度时铜导线的电阻值。例如,由R=0得T=-242.5,即预测温度T=-242.5℃时,铜导线无电阻。6-2例2已知实验数据如下表i01234567813456789101054211234试用最小二乘法求它的二次拟合多项式。解设拟合曲线方程为列表如下I0110111101013592781154524416642561664352251256251050461362161296636571493432401749682645124096161287938172965612724381041001000100004040053323813017253171471025得正规方程组解得故拟合多项式为

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功