初中函数知识点总复习(一)平面直角坐标系知识点归纳1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(ba,)一一对应;其中,a为横坐标,b为纵坐标坐标;3、x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;4、四个象限的点的坐标具有如下特征:小结:(1)点P(yx,)所在的象限横、纵坐标x、y的取值的正负性;(2)点P(yx,)所在的数轴横、纵坐标x、y中必有一数为零;5、在平面直角坐标系中,已知点P),(ba,则(1)点P到x轴的距离为b;(2)点P到y轴的距离为a;(3)点P到原点O的距离为PO=22ba6、平行直线上的点的坐标特征:a)在与x轴平行的直线上,所有点的纵坐标相等;点A、B的纵坐标都等于m;b)在与y轴平行的直线上,所有点的横坐标相等;点C、D的横坐标都等于n;象限横坐标x纵坐标y第一象限正正第二象限负正第三象限负负第四象限正负P(ba,)abxyO-3-2-101ab1-1-2-3P(a,b)YxXYABmBXYCDnab7、对称点的坐标特征:a)点P),(nm关于x轴的对称点为),(1nmP,即横坐标不变,纵坐标互为相反数;b)点P),(nm关于y轴的对称点为),(2nmP,即纵坐标不变,横坐标互为相反数;c)点P),(nm关于原点的对称点为),(3nmP,即横、纵坐标都互为相反数;关于x轴对称关于y轴对称关于原点对称8、两条坐标轴夹角平分线上的点的坐标的特征:a)若点P(nm,)在第一、三象限的角平分线上,则nm,即横、纵坐标相等;b)若点P(nm,)在第二、四象限的角平分线上,则nm,即横、纵坐标互为相反数;在第一、三象限的角平分线上在第二、四象限的角平分线上(二)一次函数知识点归纳【基本要点】1、变量:在一个变化过程中可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。注:这是课本对于函数的定义,在理解与实际运用中我们要注意以下几点:1、函数只能描述两个变量之间的关系,多一个少一个变量都是不对的;如:y=xz中有三个变量,就不是函数;y=0中只有一个变量,也不是函数;而y=0(x>0)却是函数,因为括号中标明了自变量的取值范围;2、当自变量去每一个确定的值时因变量只能取唯一确定的值相对应,反之,当因变量取每一个确定的值时自变量可以去若干个值相对应;因为这两个变量有先变与后变的问题,让后变的先取一个值,先变的就不一定只取一个值;3、我们只能说函数值是自变量的函数,或用自变量来表示函数值,如:a是b的函数就说明a是函数值,b是自变量;用y表示x就说明y是自变量,x是函数值;任何函数都要标明谁是谁的函数,不能随便说一个解析式是不是函数,如:Y=x2,只能说y是x的函数,就不能说x是y的函数;4、函数解析式的表示:只有函数值写在等号左边,含有自变量的式子写在等号右边;注意不能写成2y=3x-3或y2=3x-3的形式;5、任何函数都包含自变量的取值范围,如果没指明说明自变量的取值范围是任意实数。自变量的取值范围从以下几个方面把握:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。3、函数的图像XyP1PnnmOXyP2PmmnOXyP3PmmnOnXyPmnOyPmnOX一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.4、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。5、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。6、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。7、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①k不为零②x指数为1③b取零当k0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k0时,直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k0时,图像经过一、三象限;k0时,图像经过二、四象限(4)增减性:k0,y随x的增大而增大;k0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴8、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式y=kx+b(k不为零)①k不为零②x指数为1③b取任意实数一次函数y=kx+b的图象是经过(0,b)和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b0时,向上平移;当b0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k0)(2)必过点:(0,b)和(-kb,0)(3)走向:k0,图象经过第一、三象限;k0,图象经过第二、四象限b0,图象经过第一、二象限;b0,图象经过第三、四象限00bk直线经过第一、二、三象限00bk直线经过第一、三、四象限00bk直线经过第一、二、四象限00bk直线经过第二、三、四象限(4)增减性:k0,y随x的增大而增大;k0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b0时,将直线y=kx的图象向上平移b个单位;当b0时,将直线y=kx的图象向下平移b个单位.9、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),(-kb,0).即横坐标或纵坐标为0的点.10、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b0时,向上平移;当b0时,向下平移).11、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.12、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b0或ax+b0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.13、一次函数与二元一次方程组(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=bcxba的图象相同.(2)二元一次方程组222111cybxacybxa的解可以看作是两个一次函数y=1111bcxba和y=2222bcxba的图象交点.【考点指要】一次函数常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法;为方便大家计算以及分析题目,现介绍一些解题过程中可以运用的公式与性质,希望大家能反复揣摩、理解、运用以期熟练地掌握,这样可以化繁为简!这里要强调的是以下这些公式。1、一次函数解析式的几种类型①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-1y=k(x-1x)[点斜式](k为直线斜率,(1x,1y)为该直线所过的一个点)④211xxxx=211yyyy[两点式]((1x,1y)与(2x,2y)为直线上的两点)⑤byax=0[截距式](a、b分别为直线在x、y轴上的截距)2.求函数图像的k值:2121yyxx((1x,1y)与(2x,2y)为直线上的两点)3.求任意线段长221221yyxx((1x,1y)与(2x,2y)为直角坐标系任意两点)4、求任意两点所连线段的中点坐标:(221xx,221yy)5、若两条直线y=k1x+b1与y=k2x+b2互相平行,那么k1=k2,b1≠b26、若两条直线y=k1x+b1与y=k2x+b2互相垂直,那么k1×k2=-17、将y=kx+b向上平移n个单位后变成y=kx+b+n;向下平移n个单位变成y=kx+b-n8、将y=kx+b向左平移n个单位后变成y=k(x+n)+b;将y=kx+b向右平移n个单位后变成y=k(x-n)+b(任何图像的平移都遵循上加下减,左加右减的规则)9、若y=k1x+b1与y=k2x+b2关于x轴对称,那么k1+k2=0、b1+b2=010、若y=k1x+b1与y=k2x+b2关于y轴对称,那么k1+k2=0、b1=b211、同理,y=k1x与y=k2x关于平行、垂直、平移、对称也满足以上性质12、y=kx+b与坐标轴围成的三角形面积为kb2213、y=kx(k是常数,k≠0)必过点:(0,0)、(1,k)14、y=kx+b必过点:(0,b)和(-kb,0)(三)反比例函数知识点归纳知识点1反比例函数的定义一般地,形如xky(k为常数,0k)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x是自变量,y是x的反比例函数;⑵自变量x的取值范围是0x的一切实数,函数值的取值范围是0y;⑶比例系数0k是反比例函数定义的一个重要组成部分;⑷反比例函数有三种表达式:①xky(0k),②1kxy(0k),③kyx(定值)(0k);⑸函数xky(0k)与ykx(0k)是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。(k为常数,0k)是反比例函数的一部分,当k=0时,xky,就不是反比例函数了,由于反比例函数xky(0k)中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。知识点2用待定系数法求反比例函数的解析式由于反比例函数xky(0k)中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x,函数值0y,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,