理论力学第二章思考题及习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章思考题2.1一均匀物体假如由几个有规则的物体并合(或剜去)而成,你觉得怎样去求它的质心?2.2一均匀物体如果有三个对称面,并且此三对称面交于一点,则此质点即均匀物体的质心,何故?2.3在质点动力学中,能否计算每一质点的运动情况?假如质点组不受外力作用,每一质点是否都将静止不动或作匀速直线运动?2.4两球相碰撞时,如果把此两球当作质点组看待,作用的外力为何?其动量的变化如何?如仅考虑任意一球,则又如何?2.5水面上浮着一只小船。船上一人如何向船尾走去,则船将向前移动。这是不是与质心运动定理相矛盾?试解释之。2.6为什么在碰撞过程中,动量守恒而能量不一定守恒?所损失的能量到什么地方去了?又在什么情况下,能量才也守恒?2.7选用质心坐标系,在动量定理中是否需要计入惯性力?2.8轮船以速度V行驶。一人在船上将一质量为m的铁球以速度v向船首抛去。有人认为:这时人作的功为mvVmvmVvVm222212121你觉得这种看法对吗?如不正确,错在什么地方?2.9秋千何以能越荡越高?这时能量的增长是从哪里来的?2.10在火箭的燃料全部燃烧完后,§2.7(2)节中的诸公式是否还能应用?为什么?2.11多级火箭和单级火箭比起来,有哪些优越的地方?第二章思考题解答2.1.答:因均匀物体质量密度处处相等,规则形体的几何中心即为质心,故先找出各规则形体的质心把它们看作质点组,然后求质点组的质心即为整个物体的质心。对被割去的部分,先假定它存在,后以其负质量代入质心公式即可。2.2.答:物体具有三个对称面已足以确定该物体的规则性,该三平面的交点即为该物体的几何对称中心,又该物体是均匀的,故此点即为质心的位置。2.3.答:对几个质点组成的质点组,理论上可以求每一质点的运动情况,但由于每一质点受到周围其它各质点的相互作用力都是相互关联的,往往其作用力难以预先知道;再者,每一质点可列出三个二阶运动微分方程,各个质点组有n3个相互关联的三个二阶微分方程组,难以解算。但对于二质点组成的质点组,每一质点的运动还是可以解算的。若质点组不受外力作用,由于每一质点都受到组内其它各质点的作用力,每一质点的合内力不一定等于零,故不能保持静止或匀速直线运动状态。这表明,内力不改变质点组整体的运动,但可改变组内质点间的运动。2.4.答:把碰撞的二球看作质点组,由于碰撞内力远大于外力,故可以认为外力为零,碰撞前后系统的动量守恒。如果只考虑任一球,碰撞过程中受到另一球的碰撞冲力的作用,动量发生改变。2.5.答:不矛盾。因人和船组成的系统在人行走前后受到的合外力为零(忽略水对船的阻力),且开船时系统质心的初速度也为零,故人行走前后系统质心相对地面的位置不变。当人向船尾移动时,系统的质量分布改变,质心位置后移,为抵消这种改变,船将向前移动,这是符合质心运动定理的。2.6.答:碰撞过程中不计外力,碰撞内力不改变系统的总动量,但碰撞内力很大,使物体发生形变,内力做功使系统的动能转化为相碰物体的形变能(分子间的结合能),故动量守恒能量不一定守恒。只有完全弹性碰撞或碰撞物体是刚体时,即相撞物体的形变可以完全恢复或不发生形变时,能量也守恒,但这只是理想情况。2.7.答:设质心的速度cv,第i个质点相对质心的速度iv,则icivvv,代入质点组动量定理可得iciiiiieiiiimmdtdaFFv这里用到了质心运动定理vciieimaF。故选用质心坐标系,在动量定理中要计入惯性力。但质点组相对质心的动量守恒常矢量iiimv。当外力改变时,质心的运动也改变,但质点组相对于质心参考系的动量不变,即相对于质心参考系的动量不受外力影响,这给我们解决问题带来不少方便。值得指出:质点组中任一质点相对质心参考系有,对质心参考系动量并不守恒。2.8.答不对.因为人抛球前后球与船和人组成的系统的动量守恒,球抛出后船和人的速度不再是V。设船和人的质量为M,球抛出后船和人的速度为V,则vVmMVVmM11vmMmVV1球出手时的速度应是vV1。人做的功应等于系统动能的改变,不是只等于小球动能的改变,故人做的功应为222121212121vmMMmVmMvVmMV显然与系统原来的速度无关。2.9.答:秋千受绳的拉力和重力的作用,在运动中绳的拉力提供圆弧运动的向心力,此力不做功,只有重力做功。重力是保守力,故重力势能与动能相互转化。当秋千荡到铅直位置向上去的过程中,人站起来提高系统重心的位置,人克服重力做功使系统的势能增加;当达到最高点向竖直位置折回过程中,人蹲下去,内力做功降低重心位置使系统的动能增大,这样循环往复,系统的总能不断增大,秋千就可以越荡越高。这时能量的增长是人体内力做功,消耗人体内能转换而来的。2.10.答:火箭里的燃料全部烧完后,火箭的质量不再改变,然而质量不变是变质量物体运动问题的特例,故§2.7(2)中诸公式还能适用,但诸公式都已化为恒质量系统运动问题的公式。2.11.答:由zvvmmvvvrsrlnln000知,要提高火箭的速度必须提高喷射速度rv或增大质量比smm0。由于燃料的效能,材料的耐温等一系列技术问题的限制,rv不能过大;又由于火箭的外壳及各装置的质量0m相当大,质量比也很难提高,故采用多级火箭,一级火箭的燃料燃完后外壳自行脱落减小火箭的质量使下一级火箭开始工作后便于提高火箭的速度。若各级火箭的喷射速度都为rv,质量比分别为nzzz.,,21,各级火箭的工作使整体速度增加nvvv,,21,则火箭的最后速度nrnrnzzzvzzzvvvvv212121lnlnlnln因每一个z都大于1,故v可达到相当大的值。但火箭级数越多,整个重量越大,制造技术上会带来困难,再者级越高,质量比越减小,级数很多时,质量比逐渐减小趋近于1,速度增加很少。故火箭级数不能过多,一般三至四级火箭最为有效。第二章习题.2.1求均匀扇形薄片的质心,此扇形的半径为a,所对的圆心角为2,并证半圆片的质心离圆心的距离为a34。2.2如自半径为a的球上,用一与球心相距为b的平面,切出一球形帽,求此球形冒的质心。2.3重为W的人,手里拿着一个重为w的物体。此人用与地平线成角的速度0v向前跳去,跳的距离增加了多少?2.4质量为1m的质点,沿倾角为的光滑直角劈滑下,劈的本身,质量为2m,又可在光滑水平面自由滑动。试求a质点水平方向的加速度1x;b劈的加速度2x;c劈对质点的反作用力1R;d水平面对劈的反作用力2R;2.5半径为a,质量为M的薄圆片,绕垂直于圆片并通过圆心的竖直轴以匀角速转动,求绕此轴的动量矩。2.6一炮弹的质量为21MM,射出时的水平及竖直分速度为U及V。当炮弹达到最高点时,其内部的炸药产生能量E,使此炸弹分为1M及2M两部分。在开始时,两者仍沿原方向飞行,试求它们落地时相隔的距离,不计空气阻力。2.7质量为M,半径为a的光滑半球,其低面放在光滑的水平面上。有一质量为m的质点沿此半球面滑下。设质点的初位置与球心的连线和竖直向上的直线间所成之角为,并且起始时此系统是静止的,求此质点滑到它与球心的连线和竖直向上直线间所成之角为时之值。2.8一光滑球A与另一静止的光滑球B发生斜碰。如两者均为完全弹性体,且两球的质量相等,则两球碰撞后的速度互相垂直,试证明之。2.9一光滑小球与另一相同的静止小球相碰撞。在碰撞前,第一小球运动的方向与碰撞时两球的联心线成角。求碰撞后第一小球偏过的角度以及在各种值下角的最大值。设恢复系数e为已知。2.10质量为2m的光滑球用一不可伸长的绳系于固定点A。另一质量为1m的球以与绳成角的速度1v与2m正碰。试求1m与2m碰后开始运动的速度1v及2v。设恢复系数e为已知。BA1m2m1v2v1v第2.10题图2.11在光滑的水平桌面上,有质量各为m的两个质点,用一不可伸长的绳紧直相连,绳长为a。设其中一质点受到一个为绳正交的冲量I的作用,求证此后两质点各做圆滚线运动,且其能量之比为12cot2amIt,式中t为冲力作用的时间。2.12质量为1m的球以速度1v与质量为2m的静止球正碰。求碰撞后两球相对于质心的速度1V和2V又起始时,两球相对于质心的动能是多少?恢复系数e为已知。2.13长为l的均匀细链条伸直地平放在水平光滑桌面上,其方向与桌边缘垂直,此时链条的一半从桌上下垂。起始时,整个链条是静止的。试用两种不同的方法,求此链条的末端滑到桌子边缘时,链条的速度v。2.14一柔软、无弹性、质量均匀的绳索,竖直地自高处下坠至地板上。如绳索的长度等于l,每单位长度的质量等于。求当绳索剩在空中的长度等于xx<l时,绳索的速度及它对地板的压力。设开始时,绳索的速度为零,它的下端离地板的高度为h。2.15机枪质量为M,放在水平地面上,装有质量为M的子弹。机枪在单位时间内射出的质量为m.其相对地面的速度则为u,如机枪与地面的摩擦系数为,试证当M全部射出后,机枪后退的速度为gmMMMMuMM2222.16雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。2.17设用某种液体燃料发动的火箭,喷气速度为2074米/秒,单位时间内所消耗的燃料为原始火箭总质量的601。如重力加速度g的值可以认为是常数,则利用此种火箭发射人造太阳行星时,所携带的燃料的重量至少是空火箭重量的300倍。试证明之。2.18原始总质量为0M的火箭,发射时单位时间内消耗的燃料与0M正比,即0M(为比例常数),并以相对速度v喷射。已知火箭本身的质量为M,求证只有当gv时,火箭才能上升;并证能达到的最大速度为001MMgMMvIn能到的最大高度为MMInMMvMMIngv0002122.19试以行星绕太阳的运动为例,验证维里定理。计算时可利用1.9中所有的关系和公式,即认为太阳是固定不动的。第二章习题解答2.1解均匀扇形薄片,取对称轴为x轴,由对称性可知质心一定在x轴上。drr2x题2.1.1图有质心公式dmxdmxc设均匀扇形薄片密度为,任意取一小面元dS,drrddSdm又因为cosrx所以sin32adrrddrrdxdmxdmxc对于半圆片的质心,即2代入,有aaaxc3422sin32sin322.2解建立如图2.2.1图所示的球坐标系yzOab题2.2.1图把球帽看成垂直于z轴的所切层面的叠加(图中阴影部分所示)。设均匀球体的密度为。则)(222zadzydvdm由对称性可知,此球帽的质心一定在z轴上。代入质心计算公式,即)2()(432babadmzdmzc2.3解建立如题2.3.1图所示的直角坐标,原来人W与共同作一个斜抛运动。yx0vO题2.3.1图当达到最高点人把物体水皮抛出后,人的速度改变,设为xv,此人即以xv的速度作平抛运动。由此可知,两次运动过程中,在达到最高点时两次运动的水平距离是一致的(因为两次运动水平方向上均以cosv0水平v作匀速直线运动,运动的时间也相同)。所以我们只要比较人把物抛出后水平距离的变化即可。第一次运动:从最高点运动到落地,水平距离1stavscos01①gtvsin0②cossin201gvs③第二次运动:在最高点人抛出物体,水平方向上不受外力,水平方向上动量守恒,有)(cos)(0uvwWvvwWxx可知道ucos0水平距离sin)(cossin0202uvg跳的距离增加了12sss=sin)(0uvg2.4解建立如图2.4.1图所示的水平坐标。1m2m1vxOx题2.4.1图1m2m2vsi

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功