最新考纲1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.第9讲函数模型及其应用几类函数模型及其增长差异(1)几类函数模型知识梳理函数模型函数解析式一次函数型f(x)=ax+b(a,b为常数,a≠0)反比例函数型f(x)=kx+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数型f(x)=bax+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数型f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数型f(x)=axn+b(a,b为常数,a≠0)(2)指数、对数、幂函数模型性质比较函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调_____单调_____单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与_____平行随x的增大逐渐表现为与____平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax<xn<ax递增y轴x轴递增1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)函数y=2x的函数值比y=x2的函数值大.()(2)“指数爆炸”是指数型函数y=abx+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.()(3)幂函数增长比直线增长更快.()(4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)<f(x)<g(x).()诊断自测×√××2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是()解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除A.因交通堵塞停留了一段时间,与学校的距离不变,排除D.后来为了赶时间加快速度行驶,排除B.故选C.答案C3.(2014·深圳模拟)用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()A.3B.4C.6D.12答案A解析设隔墙的长为x(0<x<6),矩形面积为y,则y=x×24-4x2=2x(6-x)=-2(x-3)2+18,∴当x=3时,y最大.4.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=ekt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.答案2ln21024解析当t=0.5时,y=2,∴2=∴k=2ln2,∴y=e2tln2,当t=5时,y=e10ln2=210=1024.5.(人教A必修1P104例5改编)某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如表所示:请根据以上数据作出分析,这个经营部为获得最大利润,定价应为________元.销售单价/元6789101112日均销售量/桶480440400360320280240解析设在进价基础上增加x元后,日均销售利润为y元,日均销售量为480-40(x-1)=520-40x(桶),则y=(520-40x)x-200=-40x2+520x-200,0<x<13.当x=6.5时,y有最大值.所以只需将销售单价定为11.5元,就可获得最大的利润.答案11.5考点一二次函数模型【例1】A,B两城相距100km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?规律方法实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定注意函数的定义域.解(1)x的取值范围为10≤x≤90.(2)y=5x2+52(100-x)2(10≤x≤90).(3)因为y=5x2+52(100-x)2=152x2-500x+25000=152x-10032+500003,所以当x=1003时,ymin=500003.故核电站建在距A城1003km处,能使供电总费用y最少.【训练1】(2014·武汉高三检测)某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元解析设公司在A地销售该品牌的汽车x辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-0.1(x-212)2+0.1×2124+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元.答案C考点二指数函数、对数函数模型【例2】(2014·青岛模拟)世界人口在过去40年翻了一番,则每年人口平均增长率是(参考数据lg2≈0.3010,100.0075≈1.017)()A.1.5%B.1.6%C.1.7%D.1.8%答案C解析设每年人口平均增长率为x,则(1+x)40=2,两边取以10为底的对数,则40lg(1+x)=lg2,所以lg(1+x)=lg240≈0.0075,所以100.0075=1+x,得1+x=1.017,所以x=1.7%.规律方法在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y=N(1+p)x(其中N为基础数,p为增长率,x为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.【训练2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析设该股民购这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.答案B(1)写出2015年第x个月的旅游人数f(x)(单位:人)与x的函数关系式;(2)试问2015年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?考点三分段函数模型【例3】某旅游景点预计2015年1月份起前x个月的旅游人数的和p(x)(单位:万人)与x的关系近似地满足p(x)=12x(x+1)(39-2x)(x∈N*,且x≤12).已知第x个月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=35-2x(x∈N*,且1≤x≤6),160x(x∈N*,且7≤x≤12).解(1)当x=1时,f(1)=p(1)=37,当2≤x≤12,且x∈N*时,f(x)=p(x)-p(x-1)=12x(x+1)(39-2x)-12(x-1)x(41-2x)=-3x2+40x,验证x=1也满足此式,所以f(x)=-3x2+40x(x∈N*,且1≤x≤12).(2)第x个月旅游消费总额为g(x)=(-3x2+40x)(35-2x)(x∈N*,且1≤x≤6),(-3x2+40x)·160x(x∈N*,且7≤x≤12),即g(x)=6x3-185x2+1400x(x∈N*,且1≤x≤6),-480x+6400(x∈N*,且7≤x≤12).①当1≤x≤6,且x∈N*时,g′(x)=18x2-370x+1400,令g′(x)=0,解得x=5或x=1409(舍去).当1≤x<5时,g′(x)>0,当5<x≤6时,g′(x)<0,∴当x=5时,g(x)max=g(5)=3125(万元).②当7≤x≤12,且x∈N*时,g(x)=-480x+6400是减函数,∴当x=7时,g(x)max=g(7)=3040(万元).综上,2015年5月份的旅游消费总额最大,最大旅游消费总额为3125万元.规律方法(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.【训练3】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为x元,可以获得的折扣金额为y元,则y关于x的解析式为解析若x=1300元,则y=5%(1300-800)=25(元)<30(元),因此x>1300.∴由10%(x-1300)+25=30,得x=1350(元).答案1350y=0,0<x≤800,5%(x-800),800<x≤1300,10%(x-1300)+25,x>1300.若y=30元,则他购物实际所付金额为________元.[思想方法]解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题的意义.以上过程用框图表示如下:[易错防范]1.解应用题思路的关键是审题,不仅要明白、理解问题讲的是什么,还要特别注意一些关键的字眼(如“几年后”与“第几年后”),学生常常由于读题不谨慎而漏读和错读,导致题目不会做或函数解析式写错,故建议复习时务必养成良好的审题习惯.2.在解应用题建模后一定要注意定义域,建模的关键是注意寻找量与量之间的相互依赖关系.3.解决完数学模型后,注意转化为实际问题写出总结答案.