基本初等函数的导数公式推导过程一、幂函数fxx(Q*)的导数公式推导过程命题若fxx(Q*),则1fxx.推导过程fx000112220011222011222011220limlimCCCClimCCCClimCCClimlimCCCxxxxxxfxxfxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1111Cxxx所以原命题得证.二、正弦函数sinfxx的导数公式推导过程命题若sinfxx,则cosfxx.推导过程fx0000020limsinsinlimsincoscossinsinlimcossinsincossinlimcossinsincos1limcos2sincossin12sin1222limxxxxxxfxxfxxxxxxxxxxxxxxxxxxxxxxxxxxxx200002sincoscos2sinsin222lim2sincoscossinsin222lim2sincos22limsin2limcos22xxxxxxxxxxxxxxxxxxxxxxxxx当0x时,sin22xx,所以此时sin212xx.所以0limcoscos2xxfxxx,所以原命题得证.三、余弦函数cosfxx的导数公式推导过程命题若cosfxx,则sinfxx.推导过程fx0000020limcoscoslimcoscossinsincoslimcoscoscossinsinlimcoscos1sinsinlimcos12sin1sin2sincos222limxxxxxxfxxfxxxxxxxxxxxxxxxxxxxxxxxxxxxx2000002sincos2sinsincos222lim2sinsincoscossin222lim2sinsin22limsin2limsin22limsin2sinsixxxxxxxxxxxxxxxxxxxxxxxxxxxxxnx所以原命题得证.四、指数函数xfxa(a>0,且1a)的导数公式推导过程命题若xfxa(a>0,且1a),则lnxfxaa.推导过程fx0000limlimlim1limxxxxxxxxxxxxfxxfxxaaxaaaxaax令1xta,则1xat,即log1axt.且当0x时,1xa,10xa,即0t.所以原极限可以表示为:fx0010limlog11lim1log11limlog1xtaxtaxttatatattat又因为10lim1ettt,所以fx1logelnlnelnxaxxaaaaa所以原命题得证.五、对数函数logafxx(a>0,且1a,x>0)的导数公式推导过程命题若logafxx(a>0,且1a,x>0),则1lnfxxa.推导过程fx000000limlogloglim1limlog11limlog1limlog1limloglimxaaxaxaxaxaxxfxxfxxxxxxxxxxxxxxxxxxxxxxxxxxxx001log1limlog1xxaxxaxxxxxxxx令xtx.且当0x时,0t.所以原极限可以表示为:fx101limlog1tattx又因为10lim1ettt,所以fx11lne1logelnlnaxxaxa所以原命题得证.